IEEE journal of radio frequency identification最新文献

筛选
英文 中文
A Compact Slot-Based Bi-Directional UHF RFID Reader Antenna for Far-Field Applications 用于远场应用的紧凑型槽式双向 UHF RFID 阅读器天线
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-09-10 DOI: 10.1109/JRFID.2024.3457691
Amit Birwal;Akash Shakya;Saurav;Shalini Kashyap;Kamlesh Patel
{"title":"A Compact Slot-Based Bi-Directional UHF RFID Reader Antenna for Far-Field Applications","authors":"Amit Birwal;Akash Shakya;Saurav;Shalini Kashyap;Kamlesh Patel","doi":"10.1109/JRFID.2024.3457691","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3457691","url":null,"abstract":"This research introduces a novel circularly polarized compact antenna designed for universal ultrahigh-frequency (UHF) radio-frequency identification (RFID) handheld readers for Bi-directional RFID Far-field Applications. The antenna features a microstrip feed positioned at the center opposite a slot-based square ground. The ground plane is perturbed to include a thin horizontal and vertical stub on the left side, along with a thick rectangular slot at the right side of the square ground plane to achieve circular polarization. The simulated antenna provides a 3-dB axial ratio bandwidth (ARBW) of 42 MHz (831–873 MHz), a 10 dB impedance bandwidth of 15% (814–945 MHz), and a peak gain of 5.0 dBi. The antenna is fabricated on both layers of an affordable FR4 substrate, measuring \u0000<inline-formula> <tex-math>$81times 81times 1.6~{mathrm { mm}}^{3}$ </tex-math></inline-formula>\u0000 and its measurement results are in close agreement with simulated. The application of this antenna is made with a commercial UHF RFID reader module. The obtained read range and field of view confirm that this proposed antenna is a promising option for compact universal UHF RFID handheld reader applications and other Internet of Things (IoT) based applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passive and Battery-Free RFID-Based Wireless Healthcare and Medical Devices: A Review 无源和无电池 RFID 无线保健和医疗设备:综述
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-08-28 DOI: 10.1109/JRFID.2024.3451230
Sadeque Reza Khan;Anne L. Bernassau;Marc P. Y. Desmulliez
{"title":"Passive and Battery-Free RFID-Based Wireless Healthcare and Medical Devices: A Review","authors":"Sadeque Reza Khan;Anne L. Bernassau;Marc P. Y. Desmulliez","doi":"10.1109/JRFID.2024.3451230","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3451230","url":null,"abstract":"Passive radio-frequency identification (RFID) technology has recently been applied to many battery-free wireless medical and healthcare (WMH) applications including wearable and implantable medical devices. The presence of the human body near RFID devices creates, however, several challenges in terms of design, fabrication, and testing of such WMH devices. The use of comparatively unsecured wireless links enabled by RFID communication may also jeopardize patient’s privacy as well as raise ethical concerns. With these factors in mind, this article provides a systematic review spanning two decades of the wide range of passive RFID applications in medical and healthcare devices based on the classification of RFID frequency bands. The strengths and limitations of these techniques are benchmarked against each other using performance metrics such as communication distance, tissue safety, size of the devices, as well as patient’s privacy and ethical implications. The article concludes by discussing the future opportunities and challenges raised by passive RFID for battery-free WMH devices. This comprehensive literature review aims to become a point of reference for experts and non-experts in the field.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Channel Estimation for Backscatter Relay System With Dynamic Reflection Coefficient 具有动态反射系数的后向散射中继系统的信道估计
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-08-26 DOI: 10.1109/JRFID.2024.3449555
Yulin Zhou;Yang Zhang;Aziz Altaf Khuwaja;Qifei Zhang;Xianmin Zhang;Xiaonan Hui
{"title":"Channel Estimation for Backscatter Relay System With Dynamic Reflection Coefficient","authors":"Yulin Zhou;Yang Zhang;Aziz Altaf Khuwaja;Qifei Zhang;Xianmin Zhang;Xiaonan Hui","doi":"10.1109/JRFID.2024.3449555","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3449555","url":null,"abstract":"Ambient backscatter communication (AmBC) systems with energy harvesting (EH) can achieve competitive data rates, making them a robust choice for Internet of Things (IoT) networks. In this case, channel characteristics are fundamental to the performance and efficiency of AmBC. However, the existing channel estimation methods are mostly considered in fixed scenarios, resulting in significant performance loss. Thus, in this work, we explore a backscatter relay system comprising a radio frequency (RF) source, mobile RFID tag, and reader. We propose two channel estimation schemes: Dynamic Least Squares (DLS) and Dynamic Minimum Mean Square Error (DMMSE) and derive the closed-form expression for achievable rate. By comparing analytical results for achievable rate and mean squared error (MSE) with the considered channel estimation schemes that incorporate variable input power and frequency, we can better understand the performance improvements and trade-offs. The numerical results show that AmBC using dynamic RC channel estimation schemes have a higher average achievable rate than conventional methods, and the DMMSE scheme performs better than the DLS scheme. Additionally, we achieve the optimal power and frequency corresponding to the optimal RC, which will significantly improve the performance of the AmBC system.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communication and Power Transfer Analysis of Interfering Magnetically Resonant Coupled Systems 干扰磁共振耦合系统的通信和功率传输分析
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-29 DOI: 10.1109/JRFID.2024.3434642
Richard Fischbacher;Jose Romero Lopera;David Pommerenke;Ralph Prestros;Bernhard Auinger;Wolfgang Bösch;Jasmin Grosinger
{"title":"Communication and Power Transfer Analysis of Interfering Magnetically Resonant Coupled Systems","authors":"Richard Fischbacher;Jose Romero Lopera;David Pommerenke;Ralph Prestros;Bernhard Auinger;Wolfgang Bösch;Jasmin Grosinger","doi":"10.1109/JRFID.2024.3434642","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3434642","url":null,"abstract":"This work presents, for the first time, a communication and power transfer analysis of interfering wireless power transfer (WPT) and near-field communication (NFC) systems. The communication analysis is conducted by investigating the NFC tag-to-reader communication quality in the digital baseband while being interfered with by WPT. The power transfer analysis is conducted by investigating the maximum power transferred and WPT efficiency \u0000<inline-formula> <tex-math>$eta $ </tex-math></inline-formula>\u0000 while being affected by the passive loading effects of the NFC prototype system. Inductive decoupling techniques are applied to improve the communication quality and WPT performance. Good communication quality was achieved with at least \u0000<inline-formula> <tex-math>$60~%$ </tex-math></inline-formula>\u0000 inductive decoupling. A system-level adjustment of the communication signal demodulation achieved further communication quality improvements, requiring only \u0000<inline-formula> <tex-math>$15~%$ </tex-math></inline-formula>\u0000 inductive decoupling. The WPT performance was improved by inductive decoupling, shown by an improved maximum power transfer of up to \u0000<inline-formula> <tex-math>$27~%$ </tex-math></inline-formula>\u0000 and an improved WPT efficiency \u0000<inline-formula> <tex-math>$eta $ </tex-math></inline-formula>\u0000 from 0.42 to 0.67. Additionally, inductive decoupling reduced the chance of the WPT system damaging the NFC system due to too much energy being delivered. These investigations were conducted using time-efficient broadband circuit-level simulations and measurement-verified broadband equivalent circuit coil models.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Performance Learning-Based Framework for Monocular 3-D Point Cloud Reconstruction 基于学习的高性能单目三维点云重建框架
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-29 DOI: 10.1109/JRFID.2024.3435875
AmirHossein Zamani;Kamran Ghaffari;Amir G. Aghdam
{"title":"A High-Performance Learning-Based Framework for Monocular 3-D Point Cloud Reconstruction","authors":"AmirHossein Zamani;Kamran Ghaffari;Amir G. Aghdam","doi":"10.1109/JRFID.2024.3435875","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3435875","url":null,"abstract":"An essential yet challenging step in the 3D reconstruction problem is to train a machine or a robot to model 3D objects. Many 3D reconstruction applications depend on real-time data processing, so computational efficiency is a fundamental requirement in such systems. Despite considerable progress in 3D reconstruction techniques in recent years, developing efficient algorithms for real-time implementation remains an open problem. The present study addresses current issues in the high-precision reconstruction of objects displayed in a single-view image with sufficiently high accuracy and computational efficiency. To this end, we propose two neural frameworks: a CNN-based autoencoder architecture called Fast-Image2Point (FI2P) and a transformer-based network called TransCNN3D. These frameworks consist of two stages: perception and construction. The perception stage addresses the understanding and extraction process of the underlying contexts and features of the image. The construction stage, on the other hand, is responsible for recovering the 3D geometry of an object by using the knowledge and contexts extracted in the perception stage. The FI2P is a simple yet powerful architecture to reconstruct 3D objects from images faster (in real-time) without losing accuracy. Then, the TransCNN3D framework provides a more accurate 3D reconstruction without losing computational efficiency. The output of the reconstruction framework is represented in the point cloud format. The ShapeNet dataset is utilized to compare the proposed method with the existing ones in terms of computation time and accuracy. Simulations demonstrate the superior performance of the proposed strategy. Our dataset and code are available on IEEE DataPort website and first author’s GitHub repository respectively.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Integration of Low Power RFID Wake-Up Radio for the Activation of Sensing Nodes in Industrial Plants 用于激活工业厂房传感节点的低功耗 RFID 唤醒无线电设备的设计与集成
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-22 DOI: 10.1109/JRFID.2024.3432185
Alessio Mostaccio;Nicola D’Uva;Sara Amendola;Cecilia Occhiuzzi;Gaetano Marrocco
{"title":"Design and Integration of Low Power RFID Wake-Up Radio for the Activation of Sensing Nodes in Industrial Plants","authors":"Alessio Mostaccio;Nicola D’Uva;Sara Amendola;Cecilia Occhiuzzi;Gaetano Marrocco","doi":"10.1109/JRFID.2024.3432185","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3432185","url":null,"abstract":"Hybrid wireless sensing nodes, composed of different sampling/processing and communication interfaces are gaining increasing interest in industrial scenarios thanks to their capability to create sensing networks with limited impact on operational costs and architectures. In this paper, the authors present the design and characterization of a Radio Frequency IDentification (RFID) board for the on-demand activation of sensing nodes. The device resorts to the functionalities of the EM4325 RFID IC which can emit simple voltage transitions upon the reception of RF events to wake up an external device. The antenna, namely a coplanar F-antenna, fulfills the design constraints due to its application in a potentially explosive environment and achieves a realized gain of 4 dBi. The latter, combined with the extremely low power sensitivity of the IC configured in semi-active mode, grants a reading distance of approximately 10 m. The potentialities of the IC are then investigated by comparing two configurations of the IC in terms of the duration of the wake-up signal and thus power consumption. The findings indicate that the most selective configuration is the most indicated choice in case of limited power sources.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embedded Inductance Folded-Patch Antenna With Inclined Slots for On-Metal Tag Design 用于金属标签设计的带倾斜槽嵌入式电感折叠贴片天线
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-19 DOI: 10.1109/JRFID.2024.3431198
Nurfarahin Miswadi;Nurul Huda Abd Rahman;Eng-Hock Lim;Suhaila bt Subahir;Mohd Aziz Aris;Muthukannan Murugesh
{"title":"Embedded Inductance Folded-Patch Antenna With Inclined Slots for On-Metal Tag Design","authors":"Nurfarahin Miswadi;Nurul Huda Abd Rahman;Eng-Hock Lim;Suhaila bt Subahir;Mohd Aziz Aris;Muthukannan Murugesh","doi":"10.1109/JRFID.2024.3431198","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3431198","url":null,"abstract":"A novel radio frequency identification (RFID) folded-patch tag antenna that is designed using a double-layered configuration embedded with multiple inclined slots has been proposed for on-metal applications. The slots are functioning as a tuning mechanism for adjusting the operating frequency and antenna reactance. The operating frequency can be efficiently scaled down to the desired ultra-high frequency (UHF) band, while the reactance can be easily optimized to match with the chip reactance by adjusting the embedded inclined slots, without altering the antenna structure. The proposed tag antenna has a compact size of 32 mm \u0000<inline-formula> <tex-math>$times $ </tex-math></inline-formula>\u0000 40 mm \u0000<inline-formula> <tex-math>$times 3$ </tex-math></inline-formula>\u0000.35 mm (\u0000<inline-formula> <tex-math>$0.097lambda times 0.122lambda times 0.010lambda $ </tex-math></inline-formula>\u0000), and it can be fabricated on the single side of a thin polyimide substrate through chemical etching. The tag antenna has demonstrated a far-read distance of 16m when it is tested using an EIRP power of 4W. The stability of the tag operating frequency has been proven. It is unaffected by the size variation of the backing metal object.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementations for Scattering at 1.8 Volt Between Battery-Less Transponder and Mobile Telephones 在无电池转发器和移动电话之间实现 1.8 伏散射
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-15 DOI: 10.1109/JRFID.2024.3428359
Roman Willi;Lars Kamm;Paul Zbinden;Matthias Schütz
{"title":"Implementations for Scattering at 1.8 Volt Between Battery-Less Transponder and Mobile Telephones","authors":"Roman Willi;Lars Kamm;Paul Zbinden;Matthias Schütz","doi":"10.1109/JRFID.2024.3428359","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3428359","url":null,"abstract":"This work concerns advanced implementations of a battery-less transponder operated by intentionally generated wireless signals in the 2.4 GHz ISM band. The wireless signals consist of a power supplying data stream and of a quasi-continuous Bluetooth RF (radio frequency) signal, which enables the transponder to back-scatter the RF signal to a receiver. Our setup uses two regular, unmodified mobile telephones, one for transmitting the signals, the other for receiving the scattered signals. The transponder modulates the quasi-continuous RF signal according to a subcarrier and a predetermined 1 Mbit/s bit-stream. The present extended study further compares advanced implementation techniques: Micro Controller Unit (MCU), FPGA (Field Programmable Gate Array), CPLD (Complex Programmable Logic Device) and ASIC (Application Specific Integrated Circuit) and implements a CPLD test version. Experimental results suggest that our CPLD is more suitable than MCU or FPGA implementations. The paper further demonstrates the transition from a fully synchronous to a low-power asynchronous CPLD implementation. The measured power consumption for generating the bit-stream is \u0000<inline-formula> <tex-math>$mathrm {87,mu W}$ </tex-math></inline-formula>\u0000, which results in a 6-fold reduction compared to our previous work. Accordingly, the asynchronous CPLD implementation increases total efficiency by 40% and it is expected that this will significantly extend the wireless operational range of the battery-less transponder. Thus, the CPLD technology enables fast, flexible, and cost-effective implementation, particularly in the field of research and development.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wideband Long Range Compact Serrated Triangular Patch-Based UHF RFID Tag for Metallic Base Environment 适用于金属基底环境的宽带远距离紧凑型锯齿状三角形贴片超高频 RFID 标签
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-08 DOI: 10.1109/JRFID.2024.3425050
Abhishek Choudhary;Deepak Sood
{"title":"Wideband Long Range Compact Serrated Triangular Patch-Based UHF RFID Tag for Metallic Base Environment","authors":"Abhishek Choudhary;Deepak Sood","doi":"10.1109/JRFID.2024.3425050","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3425050","url":null,"abstract":"A folded-patch tag antenna measuring (\u0000<inline-formula> <tex-math>$53.5times 12times 3.3$ </tex-math></inline-formula>\u0000) mm3 has been developed for effective operation on metallic surfaces. The antenna design features a distinctive serrated triangular patch radiator on its top layer, connected to the bottom ground plane through inductive stubs positioned at the ends. This triangular patch configuration is tailored to offer enhanced impedance matching. Furthermore, the inclusion of serrations, inductive stubs, and a thin rectangular stub on the top layer serves the dual purpose of fine-tuning the resonant frequency and reducing the overall size of the tag. The designed tag antenna works well for both ETSI and FCC bands. In practical testing scenarios in ETSI band, the designed tag antenna achieves a maximum read range of 8 meters in air and 5.1 meters when mounted on a metallic plate of size \u0000<inline-formula> <tex-math>$20times 20$ </tex-math></inline-formula>\u0000 cm2. For FCC band the read range is 4.5 m in air and 3.1 m for metallic surface. The tag also exhibit 4 m (ETSI) and 2.1 m (FCC) reading ranges on curved metallic surface. Notably, the wide operational frequency range of the tag encompasses both European/Indian and U.S. RFID bands.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-Stable Low-Power RF-to-DC Dickson Charge Pump Rectifiers for Battery-Free Sensing and IoT Systems 用于无电池传感和物联网系统的温度稳定型低功耗射频至直流 Dickson 充电泵整流器
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-07-04 DOI: 10.1109/JRFID.2024.3423711
Xiaoqiang Gu;Jorge Virgilio de Almeida;Simon Hemour;Roni Khazaka;Ke Wu
{"title":"Temperature-Stable Low-Power RF-to-DC Dickson Charge Pump Rectifiers for Battery-Free Sensing and IoT Systems","authors":"Xiaoqiang Gu;Jorge Virgilio de Almeida;Simon Hemour;Roni Khazaka;Ke Wu","doi":"10.1109/JRFID.2024.3423711","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3423711","url":null,"abstract":"Temperature variation poses a significant challenge for battery-free sensors and Internet of Things (IoT) systems, mainly due to the absence of built-in temperature compensation modules. This work presents a strategy to identify Schottky diodes for low-power RF-to-dc Dickson charge pump (DCP) rectifiers to enhance temperature stability. Theoretical analysis pinpoints that performance degradation in dynamic temperatures results from the mismatch loss between diode nonlinear junction resistance and load resistance. The analytical method is implemented to synthesize the optimum number of stages and identify suitable Schottky diodes for low-power RF-to-dc DCP rectifiers. Experimental measurements demonstrate that the SMS7621-based 3-stage RF-to-dc DCP rectifier maintains a wide matched operating temperature range from \u0000<inline-formula> <tex-math>$- 32.5~^{circ }$ </tex-math></inline-formula>\u0000C to \u0000<inline-formula> <tex-math>$70~^{circ }$ </tex-math></inline-formula>\u0000C. Further experiments show that its dc output voltage remains above 3.2 V across a wide temperature range of \u0000<inline-formula> <tex-math>$- 40~^{circ }$ </tex-math></inline-formula>\u0000C to \u0000<inline-formula> <tex-math>$80~^{circ }$ </tex-math></inline-formula>\u0000C when the RF input is −8 dBm, which can drive a commercial wireless sensor board. This work aims to serve as a benchmark for developing reliable low-power RF-to-dc DCP rectifiers that meet various operating temperature requirements of battery-free IoT sensors.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信