{"title":"A High-Reliability PUF Solution for Securing RFID Systems Against Machine Learning","authors":"Abolfazl Rajaiyan;Yas Hosseini Tehrani;Seyed Mojtaba Atarodi","doi":"10.1109/JRFID.2025.3560996","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3560996","url":null,"abstract":"For Radio Frequency Identification (RFID) security, reliable keys are essential. Physical Unclonable Functions (PUFs) prevent physical cloning, but they are sensitive to environmental variations and vulnerable to Machine Learning (ML) attacks. In this paper, a security system is proposed that aims to generate keys with high reliability and resistance to ML attacks. The entire system can be integrated into RFID tags. For reliable key generation, the proposed approach utilizes a two-step structure comprising a Coarse PUF and a Fine PUF, along with modified Ring Oscillator (RO) PUFs featuring varying ring counts. This design enhances resistance to machine learning (ML) attacks through challenge obfuscation. To further improve security against ML attacks, real-time power consumption is monitored using a novel analog circuit, and a hardware algorithm is developed based on the monitored power data. The proposed PUF (128-bit key generator) is implemented on an FPGA from the Xilinx family, specifically the Zynq-7 model. The robustness of the proposed PUF is evaluated through voltage and temperature variation tests. Experimental results demonstrate a Bit Error Rate (BER) of <inline-formula> <tex-math>$3.42times 10^{-5}$ </tex-math></inline-formula>, with uniqueness and uniformity values of 49.77% and 50.27%, respectively. While a conventional PUF exhibits a vulnerability of 91.23%, the implementation of the proposed system and hardware algorithm reduces this vulnerability to 50.17%. The obtained results confirm that the proposed system offers a significantly more secure and robust solution compared to other competitors.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"161-169"},"PeriodicalIF":2.3,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karl Adolphs-Saura;Ferran Paredes;Amirhossein Karami-Horestani;Pau Casacuberta;Paris Vélez;Ferran Martín
{"title":"Phase-Modulation All-Dielectric and “Green” Electromagnetic Encoders for Motion Sensing and Near-Field Chipless-RFID","authors":"Karl Adolphs-Saura;Ferran Paredes;Amirhossein Karami-Horestani;Pau Casacuberta;Paris Vélez;Ferran Martín","doi":"10.1109/JRFID.2025.3560736","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3560736","url":null,"abstract":"In this paper, a new electromagnetic encoder system for motion sensing and near-field chipless-RFID applications is presented. The system consists of an encoder, based on chains of transversally oriented linear apertures in a dielectric substrate, and a reader with an open-ended quarter-wavelength resonator that is sensitive to the presence of the apertures. The reader can detect variations in the phase of the reflection coefficient due to the motion of the encoder. To validate the encoder system, two encoders are implemented in a low-loss rigid substrate, and four are fabricated in flexible substrates, such as paper and plastic (polyethylene terephthalate -PET). One of the rigid encoders is incremental (with a periodic chain of apertures) and the other one is quasi-absolute (with two aperture sizes), useful for both motion sensing and near-field chipless-RFID. For the encoders implemented in flexible substrates (quasi-absolute in all cases), the apertures are replaced with linear chains of small holes, with a period of <inline-formula> <tex-math>${p}{=}2$ </tex-math></inline-formula>.3 mm. The resulting density of bits per unit length is DPL <inline-formula> <tex-math>${=}4.35$ </tex-math></inline-formula> bit/cm. Such encoders provide a means to implement cost-effective and eco-friendly (“green”) systems.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"146-160"},"PeriodicalIF":2.3,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovations in RFID and Wireless-IoT: Advancements in Smart Technologies and Sensing Applications Guest Editorial of the Special Issue on SpliTech 2024 Conference","authors":"Luca Catarinucci;Andrea Ria;Arnaud Vena","doi":"10.1109/JRFID.2025.3553925","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3553925","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"123-125"},"PeriodicalIF":2.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143777781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential RCS of Multi-Port Tag Antenna With Synchronous Modulated Backscatter","authors":"Nicolas Barbot;Ionela Prodan;Pavel Nikitin","doi":"10.1109/JRFID.2025.3557078","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3557078","url":null,"abstract":"This paper introduces a new method, called multi-port load modulation, allowing one to improve the delta RCS of any passive transponder. By switching simultaneously the loads connected to a multi-port antenna, we show that the associated delta RCS can be higher than the one predicted by the equations of R. Green in 1963. We demonstrate analytically that the delta RCS of the multi-port tag can be improved by 6 dB compared to a single port antenna. This improvement corresponds to an increase of the round-trip read range of 41%. This result can still be improved if the modulation of the structural mode adds constructively with the modulation of the antenna mode. Simulation and measurement of a fully compliant dual-port tag validate the model and achieve a large part of the predicted improvement.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"126-134"},"PeriodicalIF":2.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BLE-Driven Power-Efficient Integrated Sensing and Communication Framework for Livestock Monitoring","authors":"Lalit Kumar Baghel;Radhika Raina;Suman Kumar;Riccardo Colella;Luca Catarinucci","doi":"10.1109/JRFID.2025.3554569","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3554569","url":null,"abstract":"The existing BLE-based cattle health and activity monitoring solutions rely primarily on parametric power optimization. However, a cattle health and activity monitoring system may require non-optimized parameters. Further, existing solutions transmit raw data, which is usually generated frequently, consequently increasing total transmission and causing high power consumption. Besides, BLE-based solutions are prone to data loss as the number of devices in the network increases, necessitating multiple transmissions to overcome data loss. However, the lack of an analytical framework to determine the optimal number of retransmissions results in redundant transmissions. This highlights the need for analytical expressions to precisely calculate the required number of retransmissions to overcome data loss. Owing to this issue and the emergence of BLE-related solutions, we have first examined the root cause of higher power consumption. Secondly, to reduce the number of transmissions causing major power consumption, we have proposed a threshold mode that reduces the total number of transmissions and saves a significant amount of power by only transmitting parametric data over raw data, which is usually sensed and transmitted very frequently. Thirdly, we have derived analytical close-form expression for the average number of transmissions required for successful data reception, which was the critical bottleneck in existing works. As a result, we have achieved significant improvement in battery life over the existing works; in particular, we achieved a maximum battery life of 10 years in mode A (raw data transmission) and 21 years in mode B (thresholding mode).","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"135-145"},"PeriodicalIF":2.3,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An IoT-Based RFID Solution for Peer-to-Peer Surveillance of Warehouse Using a Novel Antenna Sensor","authors":"Aijaz Ahmed","doi":"10.1109/JRFID.2025.3553151","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3553151","url":null,"abstract":"This work presents a novel methodology of an RFID system for peer-to-peer surveillance of products in warehouses. The methodology also uses a novel antenna sensor that continuously senses the tags/ products within its radiating field region. This designed antenna sensor works in a dual frequency range of 865–867 MHz and 902–928 MHz with a peak gain and typical VSWR of 3.9 dBi and 1.05 respectively. To demonstrate the proof of concept of the methodology, 4-identical antennas are fabricated and stacked on the racks where the products along with tags are used to be placed. These tags are being monitored by the server that compares the ordered products with the collected products from the shelves and raises the warning or an alarm when any unwanted tags is moved or missing from the locations on the shelves. Multiple measurements are performed to check the accuracy and repeatability of the system with random positions of the tags. The outcome validates that the proposed antenna, along with the developed methodology, can be used in warehouses for monitoring the positions of the products as well as in the peer-to-peer surveillance of products if they have any unauthorized movements from the shelves.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"117-122"},"PeriodicalIF":2.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Andrea Casula;Antonello Mascia;Enrico Mattana;Giacomo Muntoni;Giuseppe Sforazzini;Piero Cosseddu;Paolo Maxia;Giorgio Montisci
{"title":"The Role of PEDOT Deposition in the Fabrication of Flexible RF Sensors","authors":"Giovanni Andrea Casula;Antonello Mascia;Enrico Mattana;Giacomo Muntoni;Giuseppe Sforazzini;Piero Cosseddu;Paolo Maxia;Giorgio Montisci","doi":"10.1109/JRFID.2025.3548897","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3548897","url":null,"abstract":"This paper explores the integration of Poly(3,4)-ethylenedioxythiophene (PEDOT), a conductive polymer, into high-frequency (HF) RFID tags for real-time sensing applications. By modeling PEDOT as a material with variable conductivity, the study investigates three deposition strategies: partial replacement of metallic traces, selective application to specific regions, and full tag coating. The impact of PEDOT molecular organization and deposition technique on sensor performance is analyzed to optimize functionality. The proposed sensor is cost-effective, scalable, and fully compatible with existing 13.56 MHz RFID infrastructure. Experimental evaluations and numerical simulations confirm its ability to precisely modulate the tag frequency response based on environmental stimuli. Key applications include logistics, healthcare, IoT systems, and environmental monitoring, enabling advanced tracking, temperature integrity control, and sustainability. Building on preliminary simulations, this work advances to rigorous experimental validation, demonstrating the potential of organic semiconductor-based RFID sensors as a transformative solution for high-sensitivity, real-time monitoring in industrial and commercial settings.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"95-105"},"PeriodicalIF":2.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic, Smart, Safe, and Battery-Less Environment Monitoring With IoT: Communication, Localization, and Sensing","authors":"Glauco Cecchi;Andrea Motroni;Andrea Ria;Paolo Nepa","doi":"10.1109/JRFID.2025.3548569","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3548569","url":null,"abstract":"This paper presents an automatic, smart, safe and battery-less network for environmental monitoring implemented by passive Internet of Things (IoT) sensing devices with an Ultra High-Frequency (UHF) Radio Frequency IDentification (RFID) interface. A mobile robot navigates into the environment enabling continuous and automatic communication with passive RFID sensor tags deployed at specified locations and their localization as well. These low-power sensors, identified through the tag Electronic Product Code (EPC), may provide temperature, humidity, lighting, or other data through the RFID standardized communication protocol. To enhance the system degree of automation, passive RFID tags implementing antenna self-tuning strategies are also exploited by the robot to identify obstacles in the environment by exploiting the same mobile RFID architecture used for environmental monitoring. Fine-grained positioning of passive RFID sensors is achieved with techniques based on the Synthetic Arrays principle. The paper presents a demonstrator illustrating the described system. It includes passive RFID sensor tags designed for indoor temperature monitoring, with a moving antenna featured to localize the sensor tags and detect self-tuning tags installed for the collision-avoidance system. The performance confirms the practicality of the proposed IoT system.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"106-116"},"PeriodicalIF":2.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Ria;Simone Contardi;Massimo Piotto;Paolo Bruschi
{"title":"Wireless Single-Chip ECG Monitoring System With Bioimpedance Analysis","authors":"Andrea Ria;Simone Contardi;Massimo Piotto;Paolo Bruschi","doi":"10.1109/JRFID.2025.3546623","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3546623","url":null,"abstract":"Low-cost commercial ECG electrodes combined with custom integrated electronic circuits can create a compact system capable of performing both ECG and bioimpedance measurements. This paper introduces a compact and wireless solution for ECG and bioimpedance acquisition, relying on a newly introduced versatile low-power, mixed-signal single chip sensor interface, without the need for complex acquisition and signal processing algorithms. Experimental tests were conducted on a prototype to evaluate its ability to measure biomedical signals. Results are compared with the performance of commercial device with excellent agreement.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"88-94"},"PeriodicalIF":2.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143611897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform","authors":"Shin-Yi Ooi;Eng-Hock Lim;Pei-Song Chee;Chun-Hui Tan;Jen-Hahn Low","doi":"10.1109/JRFID.2025.3544414","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3544414","url":null,"abstract":"For the first time, two sections of planar meandered lines are incorporated with a compact C-shaped patch structure for designing a zeroth-order tag antenna that can be applied on metallic platforms. The proposed antenna operates at a resonance frequency of 0.915 GHz, which falls within the US UHF RFID (0.902 – 0.928 GHz). The meandered lines can introduce sufficient inductances for enabling the zeroth-order resonance. Also, the line dimension can be adjusted to tune the tag resonant frequency effectively. An analysis of the antenna’s characteristics was carried out through unit cell simulation. It has been found that the zeroth-order resonance can be successfully excited even with the inclusion of the microchip. The proposed tag antenna is compact (<inline-formula> <tex-math>$20times 40times 1.6$ </tex-math></inline-formula> mm3), and it has a broadside read pattern with a long distance of up to 11.29 m at EIRP 4 W. When tested on various metal objects, the proposed tag has demonstrated consistent read performances.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"80-87"},"PeriodicalIF":2.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}