天花板机器人:一种安装在天花板上的机器人,通过基于宽带sar的强化学习快速准确地定位现成的rfid

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Weitung Chen;Tara Boroushaki;Isaac Perper;John Carrick;Fadel Adib
{"title":"天花板机器人:一种安装在天花板上的机器人,通过基于宽带sar的强化学习快速准确地定位现成的rfid","authors":"Weitung Chen;Tara Boroushaki;Isaac Perper;John Carrick;Fadel Adib","doi":"10.1109/JRFID.2025.3576481","DOIUrl":null,"url":null,"abstract":"We present the design, implementation, and evaluation of Ceilbot, a ceiling-mounted robot for efficient and accurate RFID localization. Unlike previous robotic RFID localization systems, which focused primarily on localization accuracy, Ceilbot learns to jointly optimize both the accuracy and speed of localization. To achieve this, we introduce a reinforcement-learning-based (RL) trajectory optimization network that determines the most effective trajectory for a robot-mounted reader antenna. Our algorithm integrates aperture length, estimated tag locations, and location confidence (using a wideband synthetic-aperture-radar formulation) into the state observations to learn the optimal trajectory. We developed an end-to-end prototype of Ceilbot and evaluated it in a practical stockroom-like environment. The prototype includes a standard RFID reader with our custom hardware extension (to enable wideband localization of off-the-shelf RFIDs) and a ceiling robot that moves on a 2D track. In our evaluation, Ceilbot demonstrated a median 3D localization accuracy of 0.17 meters and located over 50 RFID tags <inline-formula> <tex-math>$12.5\\times $ </tex-math></inline-formula> faster than the state-of-the-art baseline. Our results highlight the potential for RL-based RFID localization to significantly enhance the efficiency of RFID inventory processes across sectors such as manufacturing, retail, and logistics.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"361-376"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ceilbot: A Ceiling-Mounted Robot for Fast and Accurate Localization of Off-the-Shelf RFIDs via Wideband SAR-Based Reinforcement Learning\",\"authors\":\"Weitung Chen;Tara Boroushaki;Isaac Perper;John Carrick;Fadel Adib\",\"doi\":\"10.1109/JRFID.2025.3576481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design, implementation, and evaluation of Ceilbot, a ceiling-mounted robot for efficient and accurate RFID localization. Unlike previous robotic RFID localization systems, which focused primarily on localization accuracy, Ceilbot learns to jointly optimize both the accuracy and speed of localization. To achieve this, we introduce a reinforcement-learning-based (RL) trajectory optimization network that determines the most effective trajectory for a robot-mounted reader antenna. Our algorithm integrates aperture length, estimated tag locations, and location confidence (using a wideband synthetic-aperture-radar formulation) into the state observations to learn the optimal trajectory. We developed an end-to-end prototype of Ceilbot and evaluated it in a practical stockroom-like environment. The prototype includes a standard RFID reader with our custom hardware extension (to enable wideband localization of off-the-shelf RFIDs) and a ceiling robot that moves on a 2D track. In our evaluation, Ceilbot demonstrated a median 3D localization accuracy of 0.17 meters and located over 50 RFID tags <inline-formula> <tex-math>$12.5\\\\times $ </tex-math></inline-formula> faster than the state-of-the-art baseline. Our results highlight the potential for RL-based RFID localization to significantly enhance the efficiency of RFID inventory processes across sectors such as manufacturing, retail, and logistics.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"9 \",\"pages\":\"361-376\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11023525/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11023525/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了Ceilbot的设计、实现和评估,Ceilbot是一种安装在天花板上的机器人,用于高效和准确的RFID定位。与之前主要关注定位精度的机器人RFID定位系统不同,Ceilbot学习如何共同优化定位的准确性和速度。为了实现这一点,我们引入了一个基于强化学习(RL)的轨迹优化网络,该网络确定了安装在机器人上的读取器天线的最有效轨迹。我们的算法将孔径长度、估计的标签位置和位置置信度(使用宽带合成孔径雷达公式)集成到状态观测中,以学习最优轨迹。我们开发了一个端到端的Ceilbot原型,并在一个类似仓库的实际环境中对其进行了评估。该原型包括一个带有我们定制硬件扩展的标准RFID读取器(以实现现成RFID的宽带定位)和一个在2D轨道上移动的天花板机器人。在我们的评估中,Ceilbot的3D定位精度中位数为0.17米,定位50多个RFID标签的速度比最先进的基线快12.5倍。我们的研究结果强调了基于rl的RFID本地化的潜力,可以显著提高制造业、零售业和物流等行业的RFID库存流程的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ceilbot: A Ceiling-Mounted Robot for Fast and Accurate Localization of Off-the-Shelf RFIDs via Wideband SAR-Based Reinforcement Learning
We present the design, implementation, and evaluation of Ceilbot, a ceiling-mounted robot for efficient and accurate RFID localization. Unlike previous robotic RFID localization systems, which focused primarily on localization accuracy, Ceilbot learns to jointly optimize both the accuracy and speed of localization. To achieve this, we introduce a reinforcement-learning-based (RL) trajectory optimization network that determines the most effective trajectory for a robot-mounted reader antenna. Our algorithm integrates aperture length, estimated tag locations, and location confidence (using a wideband synthetic-aperture-radar formulation) into the state observations to learn the optimal trajectory. We developed an end-to-end prototype of Ceilbot and evaluated it in a practical stockroom-like environment. The prototype includes a standard RFID reader with our custom hardware extension (to enable wideband localization of off-the-shelf RFIDs) and a ceiling robot that moves on a 2D track. In our evaluation, Ceilbot demonstrated a median 3D localization accuracy of 0.17 meters and located over 50 RFID tags $12.5\times $ faster than the state-of-the-art baseline. Our results highlight the potential for RL-based RFID localization to significantly enhance the efficiency of RFID inventory processes across sectors such as manufacturing, retail, and logistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信