{"title":"An IoT-Based RFID Solution for Peer-to-Peer Surveillance of Warehouse Using a Novel Antenna Sensor","authors":"Aijaz Ahmed","doi":"10.1109/JRFID.2025.3553151","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3553151","url":null,"abstract":"This work presents a novel methodology of an RFID system for peer-to-peer surveillance of products in warehouses. The methodology also uses a novel antenna sensor that continuously senses the tags/ products within its radiating field region. This designed antenna sensor works in a dual frequency range of 865–867 MHz and 902–928 MHz with a peak gain and typical VSWR of 3.9 dBi and 1.05 respectively. To demonstrate the proof of concept of the methodology, 4-identical antennas are fabricated and stacked on the racks where the products along with tags are used to be placed. These tags are being monitored by the server that compares the ordered products with the collected products from the shelves and raises the warning or an alarm when any unwanted tags is moved or missing from the locations on the shelves. Multiple measurements are performed to check the accuracy and repeatability of the system with random positions of the tags. The outcome validates that the proposed antenna, along with the developed methodology, can be used in warehouses for monitoring the positions of the products as well as in the peer-to-peer surveillance of products if they have any unauthorized movements from the shelves.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"117-122"},"PeriodicalIF":2.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long Range, Compact, Flippable UHF RFID Tag for Metallic Base Environments, Compliant With ETSI / FCC Bands","authors":"Abhishek Choudhary;Deepak Sood","doi":"10.1109/JRFID.2025.3571762","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3571762","url":null,"abstract":"A compact flippable tag antenna of size (<inline-formula> <tex-math>$36times 30times 3.15$ </tex-math></inline-formula>) <inline-formula> <tex-math>$mm^{3}$ </tex-math></inline-formula> has been developed using double folded technique, for effective operation on metallic surfaces in ETSI/FCC bands. The antenna features a distinctive three-layered structure with serrations incorporated into the top, middle, and bottom layers. The top layer is connected to the bottom layer through inductive stub. The RFID chip connected between the bottom and middle layers. The tag is designed for dual band operation (ETSI and FCC) through the introduction of a flipping technique in combination with double-folded configuration used for effective impedance matching between the tag antenna and chip in both the bands. The tag works for ETSI band when the top layer act as a radiator while the bottom layer is attached to the metal plate. Further, when tag is flipped, it works for FCC band. In measurement scenarios, the fabricated tag achieves a maximum read range of 12.25 m in ETSI band and 9.9 m in FCC band when mounted on a metallic plate of size <inline-formula> <tex-math>$20times 20$ </tex-math></inline-formula> cm2. The proposed tag’s performance is compared with already reported design through the evaluation of the figure of merit (FoM). With its dual band functionality and, metal-compatible design, the proposed tag eliminates the need for multiple tags or change in electronic product code (EPC) across intercontinental routes, making it highly suitable for tracking metal packages or containers in global logistics applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"274-285"},"PeriodicalIF":2.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 3-D RFID/NFC Cylindrical Magnetic Reader Coils Structure, 3DCCS, for Orientation-Free Detection of HF Tags, for Biomedical Applications","authors":"Jie Sun;Antoine Diet;Yann Le Bihan;Michel Police","doi":"10.1109/JRFID.2025.3570909","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3570909","url":null,"abstract":"Near Field Communication (NFC) technology has been explored in the application field of biomedical sciences. NFC’s inherent capabilities, such as battery-less short-range communication and secure data transfer, make it an ideal candidate for various biomedical monitoring applications. In healthcare, NFC facilitates patient identification, access control, and secure data transmission between medical devices. Additionally, NFC-enabled smart wearable devices enhance real-time health sensors data collection. A novel NFC 3D cylinder reader coil structure applied in the realm of biomedical sciences is introduced in this paper. The newly designed coil structure generates a planar rotating magnetic field, significantly improving the likelihood of successful tag identification. This enhancement in the coils’ magnetic field distribution facilitates efficient communication between NFC tags and the reader. CST simulation for the generated magnetic field has been done for design optimization. A tube with overlapped copper tape is built for experimental tag detection validation. The 3D cylinder reader coil structure enhances communication in healthcare systems.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"236-246"},"PeriodicalIF":2.3,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael A. Varner;Serhat Tadik;Cheng Qi;Rajib Bhattacharjea;Christopher Saetia;Kaitlyn M. Graves;Gregory D. Durgin
{"title":"Reflection of Modulated Radio: System-Level Design, Analysis, and Performance Evaluation for Ambient Scatter Communication Systems","authors":"Michael A. Varner;Serhat Tadik;Cheng Qi;Rajib Bhattacharjea;Christopher Saetia;Kaitlyn M. Graves;Gregory D. Durgin","doi":"10.1109/JRFID.2025.3570617","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3570617","url":null,"abstract":"Ambient scatter communication systems have long been a novelty form of radio communications, with most reported ranges limited to several meters or less and very low data rates. This work presents, implements, and analyzes the ReMoRa (Reflection of Modulated Radio) architecture for extending ambient scatter communication systems to long ranges and/or high data rates. ReMoRa comprises of a unique way to encode, down-convert, and detect signals scattered from mote to reader using ambient RF carriers that already contain information. Our ReMoRa implementation using GNURadio demonstrates read ranges of up to 20 meters between a low-powered sensor mote and an ambient reader that uses an existing FM radio signal at 91.1 MHz in Atlanta, GA with a data rate of 300.7 kbits/s, and demonstrate through simulation how these links can be extended to hundreds of meters.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"261-273"},"PeriodicalIF":2.3,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Meander Resonator Coupled UHF RFID System for Biomechanics Sensing Applications","authors":"Tauseef Hussain;Ignacio Gil;Raúl Fernández-García","doi":"10.1109/JRFID.2025.3570441","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3570441","url":null,"abstract":"This paper presents a biomechanics sensing system based on an ultra-high frequency (UHF) RFID tag coupled with a meander resonator for motion tracking and displacement sensing. The variations in their relative position alter the strength of mutual coupling, leading to impedance changes in the RFID tag antenna. These impedance variations modulate the power reflection coefficient, which in turn affects both the backscattered signal strength (RSSI) and the turn-on threshold power of the RFID tag. The performance of the system was evaluated through simulations and experimental validation, demonstrating a 14 dB reduction in RSSI and a 5 dBm increase in threshold power over a displacement range of 30 mm. The system was further validated for wearable movement sensing in knee flexion tracking, where results indicated an RSSI variation of around 12 dB as the knee angle changed from 115° to 175°. Additionally, the turn-on threshold power (<inline-formula> <tex-math>$ P_{text {th}} $ </tex-math></inline-formula>) exhibited a strong correlation with knee flexion angles, achieving a coefficient of determination (<inline-formula> <tex-math>$ R^{2} = 0.973 $ </tex-math></inline-formula>) based on curve-fitted data. These results validate the feasibility of the proposed system for wearable body motion monitoring in healthcare applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"227-235"},"PeriodicalIF":2.3,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004834","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144148139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Andrea Casula;Antonello Mascia;Enrico Mattana;Giacomo Muntoni;Giuseppe Sforazzini;Piero Cosseddu;Paolo Maxia;Giorgio Montisci
{"title":"The Role of PEDOT Deposition in the Fabrication of Flexible RF Sensors","authors":"Giovanni Andrea Casula;Antonello Mascia;Enrico Mattana;Giacomo Muntoni;Giuseppe Sforazzini;Piero Cosseddu;Paolo Maxia;Giorgio Montisci","doi":"10.1109/JRFID.2025.3548897","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3548897","url":null,"abstract":"This paper explores the integration of Poly(3,4)-ethylenedioxythiophene (PEDOT), a conductive polymer, into high-frequency (HF) RFID tags for real-time sensing applications. By modeling PEDOT as a material with variable conductivity, the study investigates three deposition strategies: partial replacement of metallic traces, selective application to specific regions, and full tag coating. The impact of PEDOT molecular organization and deposition technique on sensor performance is analyzed to optimize functionality. The proposed sensor is cost-effective, scalable, and fully compatible with existing 13.56 MHz RFID infrastructure. Experimental evaluations and numerical simulations confirm its ability to precisely modulate the tag frequency response based on environmental stimuli. Key applications include logistics, healthcare, IoT systems, and environmental monitoring, enabling advanced tracking, temperature integrity control, and sustainability. Building on preliminary simulations, this work advances to rigorous experimental validation, demonstrating the potential of organic semiconductor-based RFID sensors as a transformative solution for high-sensitivity, real-time monitoring in industrial and commercial settings.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"95-105"},"PeriodicalIF":2.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic, Smart, Safe, and Battery-Less Environment Monitoring With IoT: Communication, Localization, and Sensing","authors":"Glauco Cecchi;Andrea Motroni;Andrea Ria;Paolo Nepa","doi":"10.1109/JRFID.2025.3548569","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3548569","url":null,"abstract":"This paper presents an automatic, smart, safe and battery-less network for environmental monitoring implemented by passive Internet of Things (IoT) sensing devices with an Ultra High-Frequency (UHF) Radio Frequency IDentification (RFID) interface. A mobile robot navigates into the environment enabling continuous and automatic communication with passive RFID sensor tags deployed at specified locations and their localization as well. These low-power sensors, identified through the tag Electronic Product Code (EPC), may provide temperature, humidity, lighting, or other data through the RFID standardized communication protocol. To enhance the system degree of automation, passive RFID tags implementing antenna self-tuning strategies are also exploited by the robot to identify obstacles in the environment by exploiting the same mobile RFID architecture used for environmental monitoring. Fine-grained positioning of passive RFID sensors is achieved with techniques based on the Synthetic Arrays principle. The paper presents a demonstrator illustrating the described system. It includes passive RFID sensor tags designed for indoor temperature monitoring, with a moving antenna featured to localize the sensor tags and detect self-tuning tags installed for the collision-avoidance system. The performance confirms the practicality of the proposed IoT system.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"106-116"},"PeriodicalIF":2.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploiting Tunneling Reflection Amplifiers for Amplitude and Phase-Shift Keying Backscatter Communications","authors":"Christopher Saetia;Gregory D. Durgin","doi":"10.1109/JRFID.2025.3567044","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3567044","url":null,"abstract":"This paper proposes and explores the idea of using low-power reflection amplifiers, made with tunnel diodes, to perform amplitude and phase-shift-keying (APSK) modulation for backscatter communications. Past work used tunneling reflection amplifiers for backscatter range extension and binary-phase shift keying (BPSK) with two different voltage biasing states to generate one bit per symbol. It is advantageous to exploit the different reflection states from different applied biasing voltages to perform multi-bit backscatter communications. This work sweeps these amplifiers’ biasing voltages within a 225 mV range (below a maximum 300 mV of applied voltage) to modulate the amplifiers’ reflection coefficients and generate distinct APSK symbols from these coefficients for low-power backscatter communication applications. The implementation of APSK allows for the transmission of more than 1 bit per symbol. Unlike previous passive multi-symbol modulation schemes, the use of tunnel diode reflection amplifiers allows for creation of multiple symbols with just one device that can generate different load impedance states and reflection gains above 0 dB to allow for a greater range of magnitudes to place APSK symbols and extend read-ranges between tag/modulator and reader/receiver. These tunnel diode reflection amplifiers allow for scaling of modulation order and versatility of implementing different modulation schemes that are amplitude and phase-based.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"247-260"},"PeriodicalIF":2.3,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Ria;Simone Contardi;Massimo Piotto;Paolo Bruschi
{"title":"Wireless Single-Chip ECG Monitoring System With Bioimpedance Analysis","authors":"Andrea Ria;Simone Contardi;Massimo Piotto;Paolo Bruschi","doi":"10.1109/JRFID.2025.3546623","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3546623","url":null,"abstract":"Low-cost commercial ECG electrodes combined with custom integrated electronic circuits can create a compact system capable of performing both ECG and bioimpedance measurements. This paper introduces a compact and wireless solution for ECG and bioimpedance acquisition, relying on a newly introduced versatile low-power, mixed-signal single chip sensor interface, without the need for complex acquisition and signal processing algorithms. Experimental tests were conducted on a prototype to evaluate its ability to measure biomedical signals. Results are compared with the performance of commercial device with excellent agreement.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"88-94"},"PeriodicalIF":2.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143611897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform","authors":"Shin-Yi Ooi;Eng-Hock Lim;Pei-Song Chee;Chun-Hui Tan;Jen-Hahn Low","doi":"10.1109/JRFID.2025.3544414","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3544414","url":null,"abstract":"For the first time, two sections of planar meandered lines are incorporated with a compact C-shaped patch structure for designing a zeroth-order tag antenna that can be applied on metallic platforms. The proposed antenna operates at a resonance frequency of 0.915 GHz, which falls within the US UHF RFID (0.902 – 0.928 GHz). The meandered lines can introduce sufficient inductances for enabling the zeroth-order resonance. Also, the line dimension can be adjusted to tune the tag resonant frequency effectively. An analysis of the antenna’s characteristics was carried out through unit cell simulation. It has been found that the zeroth-order resonance can be successfully excited even with the inclusion of the microchip. The proposed tag antenna is compact (<inline-formula> <tex-math>$20times 40times 1.6$ </tex-math></inline-formula> mm3), and it has a broadside read pattern with a long distance of up to 11.29 m at EIRP 4 W. When tested on various metal objects, the proposed tag has demonstrated consistent read performances.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"80-87"},"PeriodicalIF":2.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}