Compact Folded Dipolar Patch Antenna With Broad Tuning Range for On-Metal Tag Design

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Subbiah Alagiasundaram;Kim-Yee Lee;Eng-Hock Lim;Pei-Song Chee
{"title":"Compact Folded Dipolar Patch Antenna With Broad Tuning Range for On-Metal Tag Design","authors":"Subbiah Alagiasundaram;Kim-Yee Lee;Eng-Hock Lim;Pei-Song Chee","doi":"10.1109/JRFID.2025.3561277","DOIUrl":null,"url":null,"abstract":"A compact dipolar patch antenna, which is embedded with a middle-layer patch internally, is proposed for designing an on-metal tag. Multiple tuning mechanisms have been employed for enabling frequency tuning over a wide bandwidth. First, the antenna’s shorting stubs are displaced diagonally to two opposite corners for lengthening the current paths. Then, the two patches are coupled capacitively for generating additional tuning reactance. Finally, multiple inductive slits have been incorporated with the patches for lowering the tag’s resonant frequency. Employment of the tuning mechanisms has successfully brought the tag resonance down to the UHF RFID passband. Notably, adjusting the slit length <inline-formula> <tex-math>$(i_{2})$ </tex-math></inline-formula> allows the tag’s resonant frequency to be tuned across a broad range from 834 MHz to 964 MHz. Despite its compact size of <inline-formula> <tex-math>$25\\times 25\\times 3.3$ </tex-math></inline-formula> mm3, the proposed tag can be read from a distance of 16 m (with 4W EIRP), which is much longer than most of the contemporary on-metal tags of this size.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"170-179"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10966425/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A compact dipolar patch antenna, which is embedded with a middle-layer patch internally, is proposed for designing an on-metal tag. Multiple tuning mechanisms have been employed for enabling frequency tuning over a wide bandwidth. First, the antenna’s shorting stubs are displaced diagonally to two opposite corners for lengthening the current paths. Then, the two patches are coupled capacitively for generating additional tuning reactance. Finally, multiple inductive slits have been incorporated with the patches for lowering the tag’s resonant frequency. Employment of the tuning mechanisms has successfully brought the tag resonance down to the UHF RFID passband. Notably, adjusting the slit length $(i_{2})$ allows the tag’s resonant frequency to be tuned across a broad range from 834 MHz to 964 MHz. Despite its compact size of $25\times 25\times 3.3$ mm3, the proposed tag can be read from a distance of 16 m (with 4W EIRP), which is much longer than most of the contemporary on-metal tags of this size.
紧凑型折叠偶极贴片天线与宽调谐范围上的金属标签设计
提出了一种内部嵌入中间层贴片的紧凑偶极贴片天线,用于金属标签的设计。为了在宽带宽上实现频率调谐,已经采用了多种调谐机制。首先,天线的短路桩被斜移到两个相对的角,以延长电流路径。然后,将两个贴片电容耦合以产生额外的调谐电抗。最后,在贴片中加入了多个感应缝,以降低标签的谐振频率。采用调谐机制成功地将标签共振降低到超高频RFID通频带。值得注意的是,调整狭缝长度$(i_{2})$允许标签的谐振频率在834 MHz到964 MHz的宽范围内进行调谐。尽管其紧凑的尺寸为25 × 25 × 3.3$ mm3,但拟议的标签可以从16米的距离读取(具有4W EIRP),这比当代大多数这种尺寸的金属标签长得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信