{"title":"Extending Near Field Communication Range for Ultra-Dense Internet of Things","authors":"Omar Ansari;Hongzhi Guo","doi":"10.1109/JRFID.2024.3453770","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3453770","url":null,"abstract":"The advent of 6G wireless systems promises a digital world that blends physical and virtual elements, revolutionizing our interaction with the physical environment. A critical step towards this digital world is the creation of digital twins of physical systems and objects. The Internet of Things (IoT) plays an important role in connecting and monitoring these physical entities. However, connecting all objects in our daily life is challenging due to high density and large number of devices. Near Field Communication (NFC), utilizing High Frequency (HF) band signals, emerges as a promising solution. NFC has a short communication range and high penetration efficiency, with a reliable wireless channel that does not compete for spectrum with typical cellular and local area networks. Nevertheless, its extremely short range limits its use in autonomous IoT applications. This paper explores two techniques to extend NFC’s communication range and reliability: the use of high-quality factor transmit/receive coils and high-quality factor relay coils. Additionally, the effect of tag coil coupling in a multi-tag IoT environment is examined. Analytical models are developed to evaluate these approaches, and the results are validated using COMSOL Multiphysics. The findings demonstrate a significant increase in NFC’s communication range, i.e., up to 0.9 – 1.3 m for 1 – 10 W transmit power, making it suitable for ultra-dense battery-free IoT operations.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"770-779"},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies","authors":"Xingyuan Dai;Yiqing Tang;Yuanyuan Chen;Xiqiao Zhang;Yisheng Lv","doi":"10.1109/JRFID.2024.3452473","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3452473","url":null,"abstract":"This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"780-787"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sadeque Reza Khan;Anne L. Bernassau;Marc P. Y. Desmulliez
{"title":"Passive and Battery-Free RFID-Based Wireless Healthcare and Medical Devices: A Review","authors":"Sadeque Reza Khan;Anne L. Bernassau;Marc P. Y. Desmulliez","doi":"10.1109/JRFID.2024.3451230","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3451230","url":null,"abstract":"Passive radio-frequency identification (RFID) technology has recently been applied to many battery-free wireless medical and healthcare (WMH) applications including wearable and implantable medical devices. The presence of the human body near RFID devices creates, however, several challenges in terms of design, fabrication, and testing of such WMH devices. The use of comparatively unsecured wireless links enabled by RFID communication may also jeopardize patient’s privacy as well as raise ethical concerns. With these factors in mind, this article provides a systematic review spanning two decades of the wide range of passive RFID applications in medical and healthcare devices based on the classification of RFID frequency bands. The strengths and limitations of these techniques are benchmarked against each other using performance metrics such as communication distance, tissue safety, size of the devices, as well as patient’s privacy and ethical implications. The article concludes by discussing the future opportunities and challenges raised by passive RFID for battery-free WMH devices. This comprehensive literature review aims to become a point of reference for experts and non-experts in the field.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"724-742"},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Channel Estimation for Backscatter Relay System With Dynamic Reflection Coefficient","authors":"Yulin Zhou;Yang Zhang;Aziz Altaf Khuwaja;Qifei Zhang;Xianmin Zhang;Xiaonan Hui","doi":"10.1109/JRFID.2024.3449555","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3449555","url":null,"abstract":"Ambient backscatter communication (AmBC) systems with energy harvesting (EH) can achieve competitive data rates, making them a robust choice for Internet of Things (IoT) networks. In this case, channel characteristics are fundamental to the performance and efficiency of AmBC. However, the existing channel estimation methods are mostly considered in fixed scenarios, resulting in significant performance loss. Thus, in this work, we explore a backscatter relay system comprising a radio frequency (RF) source, mobile RFID tag, and reader. We propose two channel estimation schemes: Dynamic Least Squares (DLS) and Dynamic Minimum Mean Square Error (DMMSE) and derive the closed-form expression for achievable rate. By comparing analytical results for achievable rate and mean squared error (MSE) with the considered channel estimation schemes that incorporate variable input power and frequency, we can better understand the performance improvements and trade-offs. The numerical results show that AmBC using dynamic RC channel estimation schemes have a higher average achievable rate than conventional methods, and the DMMSE scheme performs better than the DLS scheme. Additionally, we achieve the optimal power and frequency corresponding to the optimal RC, which will significantly improve the performance of the AmBC system.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"743-747"},"PeriodicalIF":2.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Fischbacher;Jose Romero Lopera;David Pommerenke;Ralph Prestros;Bernhard Auinger;Wolfgang Bösch;Jasmin Grosinger
{"title":"Communication and Power Transfer Analysis of Interfering Magnetically Resonant Coupled Systems","authors":"Richard Fischbacher;Jose Romero Lopera;David Pommerenke;Ralph Prestros;Bernhard Auinger;Wolfgang Bösch;Jasmin Grosinger","doi":"10.1109/JRFID.2024.3434642","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3434642","url":null,"abstract":"This work presents, for the first time, a communication and power transfer analysis of interfering wireless power transfer (WPT) and near-field communication (NFC) systems. The communication analysis is conducted by investigating the NFC tag-to-reader communication quality in the digital baseband while being interfered with by WPT. The power transfer analysis is conducted by investigating the maximum power transferred and WPT efficiency \u0000<inline-formula> <tex-math>$eta $ </tex-math></inline-formula>\u0000 while being affected by the passive loading effects of the NFC prototype system. Inductive decoupling techniques are applied to improve the communication quality and WPT performance. Good communication quality was achieved with at least \u0000<inline-formula> <tex-math>$60~%$ </tex-math></inline-formula>\u0000 inductive decoupling. A system-level adjustment of the communication signal demodulation achieved further communication quality improvements, requiring only \u0000<inline-formula> <tex-math>$15~%$ </tex-math></inline-formula>\u0000 inductive decoupling. The WPT performance was improved by inductive decoupling, shown by an improved maximum power transfer of up to \u0000<inline-formula> <tex-math>$27~%$ </tex-math></inline-formula>\u0000 and an improved WPT efficiency \u0000<inline-formula> <tex-math>$eta $ </tex-math></inline-formula>\u0000 from 0.42 to 0.67. Additionally, inductive decoupling reduced the chance of the WPT system damaging the NFC system due to too much energy being delivered. These investigations were conducted using time-efficient broadband circuit-level simulations and measurement-verified broadband equivalent circuit coil models.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"713-723"},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A High-Performance Learning-Based Framework for Monocular 3-D Point Cloud Reconstruction","authors":"AmirHossein Zamani;Kamran Ghaffari;Amir G. Aghdam","doi":"10.1109/JRFID.2024.3435875","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3435875","url":null,"abstract":"An essential yet challenging step in the 3D reconstruction problem is to train a machine or a robot to model 3D objects. Many 3D reconstruction applications depend on real-time data processing, so computational efficiency is a fundamental requirement in such systems. Despite considerable progress in 3D reconstruction techniques in recent years, developing efficient algorithms for real-time implementation remains an open problem. The present study addresses current issues in the high-precision reconstruction of objects displayed in a single-view image with sufficiently high accuracy and computational efficiency. To this end, we propose two neural frameworks: a CNN-based autoencoder architecture called Fast-Image2Point (FI2P) and a transformer-based network called TransCNN3D. These frameworks consist of two stages: perception and construction. The perception stage addresses the understanding and extraction process of the underlying contexts and features of the image. The construction stage, on the other hand, is responsible for recovering the 3D geometry of an object by using the knowledge and contexts extracted in the perception stage. The FI2P is a simple yet powerful architecture to reconstruct 3D objects from images faster (in real-time) without losing accuracy. Then, the TransCNN3D framework provides a more accurate 3D reconstruction without losing computational efficiency. The output of the reconstruction framework is represented in the point cloud format. The ShapeNet dataset is utilized to compare the proposed method with the existing ones in terms of computation time and accuracy. Simulations demonstrate the superior performance of the proposed strategy. Our dataset and code are available on IEEE DataPort website and first author’s GitHub repository respectively.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"695-712"},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Integration of Low Power RFID Wake-Up Radio for the Activation of Sensing Nodes in Industrial Plants","authors":"Alessio Mostaccio;Nicola D’Uva;Sara Amendola;Cecilia Occhiuzzi;Gaetano Marrocco","doi":"10.1109/JRFID.2024.3432185","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3432185","url":null,"abstract":"Hybrid wireless sensing nodes, composed of different sampling/processing and communication interfaces are gaining increasing interest in industrial scenarios thanks to their capability to create sensing networks with limited impact on operational costs and architectures. In this paper, the authors present the design and characterization of a Radio Frequency IDentification (RFID) board for the on-demand activation of sensing nodes. The device resorts to the functionalities of the EM4325 RFID IC which can emit simple voltage transitions upon the reception of RF events to wake up an external device. The antenna, namely a coplanar F-antenna, fulfills the design constraints due to its application in a potentially explosive environment and achieves a realized gain of 4 dBi. The latter, combined with the extremely low power sensitivity of the IC configured in semi-active mode, grants a reading distance of approximately 10 m. The potentialities of the IC are then investigated by comparing two configurations of the IC in terms of the duration of the wake-up signal and thus power consumption. The findings indicate that the most selective configuration is the most indicated choice in case of limited power sources.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"677-684"},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurfarahin Miswadi;Nurul Huda Abd Rahman;Eng-Hock Lim;Suhaila bt Subahir;Mohd Aziz Aris;Muthukannan Murugesh
{"title":"Embedded Inductance Folded-Patch Antenna With Inclined Slots for On-Metal Tag Design","authors":"Nurfarahin Miswadi;Nurul Huda Abd Rahman;Eng-Hock Lim;Suhaila bt Subahir;Mohd Aziz Aris;Muthukannan Murugesh","doi":"10.1109/JRFID.2024.3431198","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3431198","url":null,"abstract":"A novel radio frequency identification (RFID) folded-patch tag antenna that is designed using a double-layered configuration embedded with multiple inclined slots has been proposed for on-metal applications. The slots are functioning as a tuning mechanism for adjusting the operating frequency and antenna reactance. The operating frequency can be efficiently scaled down to the desired ultra-high frequency (UHF) band, while the reactance can be easily optimized to match with the chip reactance by adjusting the embedded inclined slots, without altering the antenna structure. The proposed tag antenna has a compact size of 32 mm \u0000<inline-formula> <tex-math>$times $ </tex-math></inline-formula>\u0000 40 mm \u0000<inline-formula> <tex-math>$times 3$ </tex-math></inline-formula>\u0000.35 mm (\u0000<inline-formula> <tex-math>$0.097lambda times 0.122lambda times 0.010lambda $ </tex-math></inline-formula>\u0000), and it can be fabricated on the single side of a thin polyimide substrate through chemical etching. The tag antenna has demonstrated a far-read distance of 16m when it is tested using an EIRP power of 4W. The stability of the tag operating frequency has been proven. It is unaffected by the size variation of the backing metal object.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"685-694"},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roman Willi;Lars Kamm;Paul Zbinden;Matthias Schütz
{"title":"Implementations for Scattering at 1.8 Volt Between Battery-Less Transponder and Mobile Telephones","authors":"Roman Willi;Lars Kamm;Paul Zbinden;Matthias Schütz","doi":"10.1109/JRFID.2024.3428359","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3428359","url":null,"abstract":"This work concerns advanced implementations of a battery-less transponder operated by intentionally generated wireless signals in the 2.4 GHz ISM band. The wireless signals consist of a power supplying data stream and of a quasi-continuous Bluetooth RF (radio frequency) signal, which enables the transponder to back-scatter the RF signal to a receiver. Our setup uses two regular, unmodified mobile telephones, one for transmitting the signals, the other for receiving the scattered signals. The transponder modulates the quasi-continuous RF signal according to a subcarrier and a predetermined 1 Mbit/s bit-stream. The present extended study further compares advanced implementation techniques: Micro Controller Unit (MCU), FPGA (Field Programmable Gate Array), CPLD (Complex Programmable Logic Device) and ASIC (Application Specific Integrated Circuit) and implements a CPLD test version. Experimental results suggest that our CPLD is more suitable than MCU or FPGA implementations. The paper further demonstrates the transition from a fully synchronous to a low-power asynchronous CPLD implementation. The measured power consumption for generating the bit-stream is \u0000<inline-formula> <tex-math>$mathrm {87,mu W}$ </tex-math></inline-formula>\u0000, which results in a 6-fold reduction compared to our previous work. Accordingly, the asynchronous CPLD implementation increases total efficiency by 40% and it is expected that this will significantly extend the wireless operational range of the battery-less transponder. Thus, the CPLD technology enables fast, flexible, and cost-effective implementation, particularly in the field of research and development.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"671-676"},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wideband Long Range Compact Serrated Triangular Patch-Based UHF RFID Tag for Metallic Base Environment","authors":"Abhishek Choudhary;Deepak Sood","doi":"10.1109/JRFID.2024.3425050","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3425050","url":null,"abstract":"A folded-patch tag antenna measuring (\u0000<inline-formula> <tex-math>$53.5times 12times 3.3$ </tex-math></inline-formula>\u0000) mm3 has been developed for effective operation on metallic surfaces. The antenna design features a distinctive serrated triangular patch radiator on its top layer, connected to the bottom ground plane through inductive stubs positioned at the ends. This triangular patch configuration is tailored to offer enhanced impedance matching. Furthermore, the inclusion of serrations, inductive stubs, and a thin rectangular stub on the top layer serves the dual purpose of fine-tuning the resonant frequency and reducing the overall size of the tag. The designed tag antenna works well for both ETSI and FCC bands. In practical testing scenarios in ETSI band, the designed tag antenna achieves a maximum read range of 8 meters in air and 5.1 meters when mounted on a metallic plate of size \u0000<inline-formula> <tex-math>$20times 20$ </tex-math></inline-formula>\u0000 cm2. For FCC band the read range is 4.5 m in air and 3.1 m for metallic surface. The tag also exhibit 4 m (ETSI) and 2.1 m (FCC) reading ranges on curved metallic surface. Notably, the wide operational frequency range of the tag encompasses both European/Indian and U.S. RFID bands.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"643-651"},"PeriodicalIF":2.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}