IEEE journal of radio frequency identification最新文献

筛选
英文 中文
High-Speed Optical Wireless System for Extreme Space Conditions 适用于极端空间条件的高速光学无线系统
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-06-11 DOI: 10.1109/JRFID.2024.3412413
Giulio Cossu;Lorenzo Gilli;Nicola Vincenti;Ezgi Ertunc;Maurizio Massa;Roberto Dell’Orso;Andrea Moggi;Fabrizio Palla;Ernesto Ciaramella
{"title":"High-Speed Optical Wireless System for Extreme Space Conditions","authors":"Giulio Cossu;Lorenzo Gilli;Nicola Vincenti;Ezgi Ertunc;Maurizio Massa;Roberto Dell’Orso;Andrea Moggi;Fabrizio Palla;Ernesto Ciaramella","doi":"10.1109/JRFID.2024.3412413","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3412413","url":null,"abstract":"In this paper, we present and deeply characterize a high-speed Optical Wireless Communication (OWC) system designed for use in space applications that operates at 1Gbit/s over a directed optical link for a point-to-point link inside a 3U CubeSat. The OWC transmitter is equipped with a Vertical Cavity Surface Emitting Laser (VCSEL) that emits at 850nm, whilst the receiver uses a PIN Photo-Diode (PD) to detect the modulated signal. We tested the system under extreme conditions including mechanical stresses similar to those experienced during a launch on SpaceX Falcon-9 vehicle, with a realistic spectrum of mechanical vibrations (up to 10G), the temperature variation (between −40 and 80°C), and X-ray irradiation ranges (up to 1Mrad). All of these values were within the expected values (or even much higher) for a Low Earth Orbit (LEO) mission. The results demonstrate that the OWC system can be suitable for use in space applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Innovative Multi-Port LoRa-Based Wireless Node for Railway Signaling and Positioning 用于铁路信号和定位的基于 LoRa 的创新型多端口无线节点
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-06-10 DOI: 10.1109/JRFID.2024.3411814
Giacomo Paolini;Enrico Fazzini;Simone Trovarello;Davide Amato;Diego Masotti;Alessandra Costanzo
{"title":"An Innovative Multi-Port LoRa-Based Wireless Node for Railway Signaling and Positioning","authors":"Giacomo Paolini;Enrico Fazzini;Simone Trovarello;Davide Amato;Diego Masotti;Alessandra Costanzo","doi":"10.1109/JRFID.2024.3411814","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3411814","url":null,"abstract":"This work presents the design and validation of a compact wireless system, adopting a modular wireless system composed of three co-located antennas operating in the 2.4 GHz band. The system is designed to be exploited for positioning purposes in secondary railway lines where the European railway traffic management system (ERTMS) is not available. An omnidirectional antenna, cross-polarized with respect to the other two, is used for transferring positioning data among the train and intelligent poles placed along the railway, while two directional radiating elements are arranged back-to-back, to perform wagon-to-wagon communication for train integrity purposes. The omnidirectional antenna has a radiation efficiency of 97.8% and a gain of 4.2 dBi, whereas the directive ones have 79.3% and 5.4 dBi, respectively. The data communication is established by using LoRa systems, enabling low-power, long-range communication with acceptable latency for the application purpose. Due to possible adverse environmental conditions, such as presence of dust or ice, a suitable enclosure of the system is designed to be as much as possible electromagnetically transparent. The whole system has been tested both in laboratory environment and on board of the moving train, inside and outside the wagon, demonstrating the successful communication between wagons and with the poles located along the railway. The highest bit error rate monitored was \u0000<inline-formula> <tex-math>$2.08times 10{^{text {-4}}}$ </tex-math></inline-formula>\u0000 in the worst testing configuration.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Malware Prediction and Containment Using Bayesian Neural Networks 利用贝叶斯神经网络增强恶意软件预测和遏制能力
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-06-06 DOI: 10.1109/JRFID.2024.3410881
Zahra Jamadi;Amir G. Aghdam
{"title":"Enhanced Malware Prediction and Containment Using Bayesian Neural Networks","authors":"Zahra Jamadi;Amir G. Aghdam","doi":"10.1109/JRFID.2024.3410881","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3410881","url":null,"abstract":"In this paper, we present an integrated framework leveraging natural language processing (NLP) techniques and machine learning (ML) algorithms to detect malware at its early stage and predict its upcoming actions. We analyze application programming interface (API) call sequences in the same way as natural language inputs. Specifically, the proposed model employs Bi-LSTM neural networks and Bayesian neural networks (BNN) for this analysis. In the first part, a Bagging-XGBoost algorithm interprets consecutive API calls as 2-gram and 3-gram strings for early-stage malware detection and feature importance analysis. Additionally, a Bi-LSTM predicts the upcoming actions of an active malware by estimating the next API call in a sequence. Two separate Bayesian Bi-LSTMs are then developed in the second part to complement the above analysis. The first architecture is for early-stage malware detection, and the other is to predict the following action of active malware. The BNN not only predicts future malware actions but also assesses the uncertainty of each prediction. It enhances the process by providing the second and third most probable predictions, increasing system reliability and effectiveness. Our unified framework demonstrates efficiency in malware detection and action prediction, marking a significant advancement in countering malware threats. The Bayesian Bi-LSTM developed for predicting the next API call has an average accuracy of 89.53%. Additionally, the accuracy of the framework for malware detection at the early stage is 96.44%, demonstrating the superior performance of the proposed framework.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three Dual-Band and Dual-Linearly Polarized Antenna Configurations for UHF-RFID and WLAN Applications 用于 UHF-RFID 和 WLAN 应用的三种双频双线性极化天线配置
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-06-04 DOI: 10.1109/JRFID.2024.3409362
Sayan Sarkar
{"title":"Three Dual-Band and Dual-Linearly Polarized Antenna Configurations for UHF-RFID and WLAN Applications","authors":"Sayan Sarkar","doi":"10.1109/JRFID.2024.3409362","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3409362","url":null,"abstract":"This paper presents three dual-band, dual-linearly polarized antenna configurations for UHF-RFID and WLAN applications. The first configuration consists of a square patch with outer ring which exhibits two resonances at 865MHz and 2.45GHz respectively. At both these frequencies, the antenna has its main beam along the +z axis (broadside direction). Two superstrates, S3 and S4, are designed to be used separately with this antenna. Both S3 and S4, when placed above the antenna separately, shift the first resonance from 865MHz to 905MHz without affecting the 2.45GHz resonance. Placing S3 5mm above the antenna gives rise to a bi-directional radiation pattern (±z-axis) while replacing S3 with S4 generates a main beam along the -z axis (opposite broadside direction) at 905MHz. The radiation pattern remains unperturbed at 2.45GHz for both configurations. The first antenna configuration works within the European UHF-RFID band whereas the antenna + S3 and antenna + S4 configurations work within the North-American UHF-RFID band. Additionally, all three configurations also operate within the 2.45GHz WLAN band. Both the antenna-superstrate configurations have very low profiles of \u0000<inline-formula> <tex-math>$lambda _{0}$ </tex-math></inline-formula>\u0000/\u0000<inline-formula> <tex-math>$24.4~(lambda _{0} ,, {=}$ </tex-math></inline-formula>\u0000 free space wavelength at 2.45GHz). The antenna can thus be used with/without the superstrates as an RFID reader depending upon requirements. The information received from the tags can then be transmitted via the WLAN channel.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single Sideband Noise Shaping for All-Digital Delta-Sigma OFDM Backscatter Modulators 全数字三角积分 OFDM 反向散射调制器的单边带噪声整形
IEEE journal of radio frequency identification Pub Date : 2024-04-30 DOI: 10.1109/JRFID.2024.3394062
James D. Rosenthal;Matthew S. Reynolds
{"title":"Single Sideband Noise Shaping for All-Digital Delta-Sigma OFDM Backscatter Modulators","authors":"James D. Rosenthal;Matthew S. Reynolds","doi":"10.1109/JRFID.2024.3394062","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3394062","url":null,"abstract":"Delta-sigma modulation (DSM) enables the use of all-digital switched impedance modulators to generate arbitrary backscatter signals. For example, a DSM-based backscatter modulator having only two or four impedance states can generate quadrature amplitude modulation (QAM) with e.g., 64 states, or multicarrier orthogonal frequency division multiplexed (OFDM) signals having many subcarriers. This paper describes potential improvements to in-channel spectral characteristics by adding single sideband (SSB) and double sideband (DSB) noise shaping to the DSM signal path. Using numerical simulation and hardware validation, we demonstrate that noise-shaped DSM can improve the spurious-free dynamic range (SFDR) of OFDM subcarriers generated by a low-resolution two-state or four-state impedance digital-to-analog converter. The noise shaping approaches are validated using a prototype OFDM backscatter uplink based on an FPGA driving a single-pole-four-throw (SP4T) CMOS RF switch that serves as the backscatter modulator. The SSB and DSB noise shaping techniques are compared by over-the-air transmission of five-subcarrier OFDM backscatter symbols with a four-times oversampling DSM at up to 1.25 Mbps. With this approach, we find that DSB noise shaping yielded a 6.2 dB improvement in SFDR relative to SSB noise shaping, at the cost of 9.8 dB higher peak out-of-band quantization noise. These results confirm that an all-digital modulation approach with noise-shaped DSM can be used to balance in-band vs. out-of-band quantization noise and thus optimize the spectral characteristics of hardware-efficient, all-digital backscatter modulators for low-power wireless communication.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Low-Profile Top-Loaded Monopole Antenna for On-Metal RFID Tag Design 用于金属表面 RFID 标签设计的扁平顶部单极天线
IEEE journal of radio frequency identification Pub Date : 2024-04-26 DOI: 10.1109/JRFID.2024.3393994
Jiun-Ian Tan;Yong-Hong Lee;Eng-Hock Lim;Fwee-Leong Bong;Boon-Kuan Chung
{"title":"A Low-Profile Top-Loaded Monopole Antenna for On-Metal RFID Tag Design","authors":"Jiun-Ian Tan;Yong-Hong Lee;Eng-Hock Lim;Fwee-Leong Bong;Boon-Kuan Chung","doi":"10.1109/JRFID.2024.3393994","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3393994","url":null,"abstract":"For the first time, a novel low-profile top-loaded monopole antenna is proposed for on-metal omnidirectional tag design. Here, a square patch is loaded on top of a short monopole antenna to improve its input impedance and radiation efficiency. Subsequently, the tag antenna is shunt-fed (using both the direct-feeding and proximity-coupled-feeding methods) to further enhance its input impedance and omnidirectionality. As a result, the antenna impedance, radiation resistance, and radiation efficiency have all been enhanced significantly, as compared with a typical short monopole antenna. A C-shaped feedline, which is to shunt-feed the tag antenna, is also introducing additional inductance to the antenna impedance for attaining good impedance matching level. Despite having a profile of not more than one hundredth of the operating wavelength, the proposed tag antenna is still able to exhibit a strong and stable omnidirectional radiation pattern when attached on a metal. The proposed tag antenna, which has a size of \u0000<inline-formula> <tex-math>$0.1069 lambda times 0.1069 lambda times 0.0098~lambda $ </tex-math></inline-formula>\u0000, can provide a constant read range of ~9.2 m in all azimuthal directions, with a minimal fluctuation of 0.5 m at 0.910 GHz. The tag’s resonance remains stable and independent of the size and shape of the backing conductive platform.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RIS Assisted AmBc Communication Over Spatially Correlated Channels 空间相关信道上的 RIS 辅助 AmBc 通信
IEEE journal of radio frequency identification Pub Date : 2024-04-26 DOI: 10.1109/JRFID.2024.3394063
Anish Kumar Gupta;Punitkumar Bhavsar
{"title":"RIS Assisted AmBc Communication Over Spatially Correlated Channels","authors":"Anish Kumar Gupta;Punitkumar Bhavsar","doi":"10.1109/JRFID.2024.3394063","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3394063","url":null,"abstract":"This article proposes incorporation of reconfigurable intelligent surfaces (RIS) with ambient backscatter (AmBc) communication. The aim is to strengthen the radio links between ambient source to backscatter device (BD) and from BD to cooperative receiver (CR). The analysis considers correlated Rician channels and incorporates hardware imperfection (HWI) modeled by von-Mises distribution. We derive a closed form expression of the outage probability which is validated through Monte Carlo (MC) simulations. The findings show improvement in outage probability for a deliberate selection of parameters of the proposed RIS assisted AmBc communication system. In addition, the importance of correlated-channel behavior is considered and analyzed for its effect on the outage probability performance of the proposed system.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Parallel Logistic Network Simulation Method and System to Improve Logistics Efficiency 提高物流效率的并行物流网络模拟方法和系统
IF 2.3
IEEE journal of radio frequency identification Pub Date : 2024-04-24 DOI: 10.1109/JRFID.2024.3392943
Sheng Liu;Xiaotian Zhuang;Liang Yan;Yu Wang;Shengnan Wu;Yisheng Lv;Fenghua Zhu;Fei-Yue Wang
{"title":"A Parallel Logistic Network Simulation Method and System to Improve Logistics Efficiency","authors":"Sheng Liu;Xiaotian Zhuang;Liang Yan;Yu Wang;Shengnan Wu;Yisheng Lv;Fenghua Zhu;Fei-Yue Wang","doi":"10.1109/JRFID.2024.3392943","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3392943","url":null,"abstract":"In order to solve the problems of package delivery delay and package loss caused by the sudden increase of package transportation demand during large-scale promotion activities such as 11.11 and 6.18, this paper proposes a parallel logistic network method, aiming at the logistic network of large logistic enterprises, establishes its equivalent virtual logistic network, senses the package transportation demand and network state of the actual logistic network, circularly simulates the operation in advance, finds the delayed and lost packages, analyzes the reasons, and adjust the parameters of network nodes and transportation lines to ensure that packages are delivered on time at low cost. Then the adjusted virtual network parameters are fed back to the actual logistic network, so as to realize the efficient operation of logistic enterprises. A simulation engine ensures that the simulation of 400 million package distribution in 30 days can be completed in half an hour on a personal computer. The application results show that the parallel logistic network reduces the package transportation time by about 10%. The transportation distance is reduced by 7%. Reduce transportation costs by 15%.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tag-Fall: A Doppler Shift-Based Fall Detection Method Using RFID Passive Tags 标签-跌倒:使用 RFID 无源标签的基于多普勒频移的跌倒检测方法
IEEE journal of radio frequency identification Pub Date : 2024-04-24 DOI: 10.1109/JRFID.2024.3393242
Kai Huang;Yongtao Ma;Yicheng Chu;Zemin Wang
{"title":"Tag-Fall: A Doppler Shift-Based Fall Detection Method Using RFID Passive Tags","authors":"Kai Huang;Yongtao Ma;Yicheng Chu;Zemin Wang","doi":"10.1109/JRFID.2024.3393242","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3393242","url":null,"abstract":"As the global population ages, the prevalence of elderly individuals living independently has risen. As one of the main threats to the health of the elderly, falling seriously reduces the happiness of the elderly and imposes a burden on the medical system. Therefore, the exploration of automatic fall detection systems is crucial. However, proposed fall detection systems exhibit varying degrees of shortcomings. In this paper, we propose a new fall detection method utilizing Doppler shift with RFID passive tags. The motion of the passive tag induces a Doppler shift in the reflected signal. This method is the first to use Doppler frequency shift for fall detection in RFID. Additionally, a velocity-position iteration algorithm is applied to ascertain the tag’s position and velocity over time. The combination of velocity and position for fall detection yields higher accuracy compared to individual parameters. The proposed method demonstrates the capability to differentiate between sudden and soft falls, aiding medical professionals in identifying the cause of a user’s fall. The experimental results demonstrate that the system achieves an accuracy rate of 91.7% in detecting sudden falls, and this accuracy remains at 86.8% even after incorporating soft falls into the analysis. Consequently, the proposed method proves to be an effective and reliable approach for fall detection.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individual Medical Costs Prediction Methods Based on Clinical Notes and DRGs 基于临床笔记和 DRGs 的个人医疗费用预测方法
IEEE journal of radio frequency identification Pub Date : 2024-04-23 DOI: 10.1109/JRFID.2024.3392682
Chai Yang;Xiaoxuan Hu;Qingli Zhu;Qiang Tu;Hongyang Geng;Jing Xu;Zhenfeng Liu;Yanjun Wang;Jing Wang
{"title":"Individual Medical Costs Prediction Methods Based on Clinical Notes and DRGs","authors":"Chai Yang;Xiaoxuan Hu;Qingli Zhu;Qiang Tu;Hongyang Geng;Jing Xu;Zhenfeng Liu;Yanjun Wang;Jing Wang","doi":"10.1109/JRFID.2024.3392682","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3392682","url":null,"abstract":"Individual medical costs prediction refers to the process of estimating the expenses associated with a patient’s medical care. Effective medical costs prediction helps in budgeting, resource allocation, and financial planning in healthcare settings, making it a crucial tool for both healthcare providers and patients. This study introduces an advanced method for predicting medical consumables costs, leveraging clinical notes and diagnosis related groups (DRGs). The approach employs Bidirectional Encoder Representations from Transformers (BERT) for text vectorization to enhance disease diagnosis and surgical procedure prediction within DRGs using Light Gradient Boosting Machine (LightGBM), and Random Forest Regression for accurate medical costs prediction. It achieves over 91% accuracy in predicting disease diagnosis and surgical procedures, and a Mean Absolute Error (MAE) of 2281.20 and an R-squared value of 0.8557. These metrics indicate a high level of accuracy and reliability, showcasing the model’s efficacy in predicting medical costs in a healthcare setting. This method improves hospital resource management and costs estimation by integrating semantic information with machine learning algorithms.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信