{"title":"Robots for search site monitoring, suspect guarding, and evidence identification","authors":"Yi-Chang Wu, Jih-Wei Lee, Huan-Chun Wang","doi":"10.11591/ijra.v9i2.pp84-93","DOIUrl":"https://doi.org/10.11591/ijra.v9i2.pp84-93","url":null,"abstract":"As an initial trial and in response to a lack of technological applications in government agencies, we have developed three multifunctional robots in accordance with the work environment and the nature of our tasks. Search Site Monitoring Robot is fitted with a panoramic camera and large wheels for walk-around search site monitoring. Suspect Guarding Robot follows and guards a suspect by tracking an augmented reality marker worn by the suspect and identifying the human body through an infrared thermal camera. For the Evidence Identification Robot, You Only Look Once (YOLO) is utilized to identify some specific evidence on search site and is equipped with a carrier and a high-torque motor for evidence transportation; it is set to issue warnings and emails to relevant personnel on specific emergencies. We have performed multiple experiments and tests to confirm the robots’ effectiveness, verifying their applicability of technological task support in government agencies.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"84-93"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46885716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cylinder Diameter Measurement for Rail Tankers Using 3D Laser Scanning Technology","authors":"Qi Chao, Shao Xuejun, Pan Qing, Wu Huijie","doi":"10.1109/ICRAS49812.2020.9134924","DOIUrl":"https://doi.org/10.1109/ICRAS49812.2020.9134924","url":null,"abstract":"Rail tankers are the main tools of transport for liquid goods and represent a measuring instrument for trade settlement. The cylinder diameter of rail tankers must be measured for process quality control and to calculate the volume. In this paper, an automated system for non-tactile diameter measurements is presented. This study aims to improve the working efficiency and reduce the artificial labor intensity of such measurements. Therefore, a 3D laser scanner is selected and combined with a computing system. The scanner collects many points along with the coordinate information, and these points constitute the point cloud and accurately reflect the tanker shape. Then, the computing system processes the point cloud by establishing a digital model, calculating the fitting initial values, fitting the curved surface, etc., and it then displays the diameter value in a 3D diagram. To verify the performance of this method, the results are compared with those of the artificial method.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79003119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changyan He, Ali Ebrahimi, Emily Yang, Muller Urias, Yang Yang, Peter Gehlbach, Iulian Iordachita
{"title":"Towards Bimanual Vein Cannulation: Preliminary Study of a Bimanual Robotic System With a Dual Force Constraint Controller.","authors":"Changyan He, Ali Ebrahimi, Emily Yang, Muller Urias, Yang Yang, Peter Gehlbach, Iulian Iordachita","doi":"10.1109/icra40945.2020.9196889","DOIUrl":"https://doi.org/10.1109/icra40945.2020.9196889","url":null,"abstract":"<p><p>Retinal vein cannulation is a promising approach for treating retinal vein occlusion that involves injecting medicine into the occluded vessel to dissolve the clot. The approach remains largely unexploited clinically due to surgeon limitations in detecting interaction forces between surgical tools and retinal tissue. In this paper, a dual force constraint controller for robot-assisted retinal surgery was presented to keep the tool-to-vessel forces and tool-to-sclera forces below prescribed thresholds. A cannulation tool and forceps with dual force-sensing capability were developed and used to measure force information fed into the robot controller, which was implemented on existing Steady Hand Eye Robot platforms. The robotic system facilitates retinal vein cannulation by allowing a user to grasp the target vessel with the forceps and then enter the vessel with the cannula. The system was evaluated on an eye phantom. The results showed that, while the eyeball was subjected to rotational disturbances, the proposed controller actuates the robotic manipulators to maintain the average tool-to-vessel force at 10.9 mN and 13.1 mN and the average tool-to-sclera force at 38.1 mN and 41.2 mN for the cannula and the forcpes, respectively. Such small tool-to-tissue forces are acceptable to avoid retinal tissue injury. Additionally, two clinicians participated in a preliminary user study of the bimanual cannulation demonstrating that the operation time and tool-to-tissue forces are significantly decreased when using the bimanual robotic system as compared to freehand performance.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2020 ","pages":"4441-4447"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9196889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25455303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gang Li, Niravkumar A Patel, Weiqiang Liu, Di Wu, Karun Sharma, Kevin Cleary, Jan Fritz, Iulian Iordachita
{"title":"A Fully Actuated Body-Mounted Robotic Assistant for MRI-Guided Low Back Pain Injection.","authors":"Gang Li, Niravkumar A Patel, Weiqiang Liu, Di Wu, Karun Sharma, Kevin Cleary, Jan Fritz, Iulian Iordachita","doi":"10.1109/icra40945.2020.9197534","DOIUrl":"10.1109/icra40945.2020.9197534","url":null,"abstract":"<p><p>This paper reports the development of a fully actuated body-mounted robotic assistant for MRI-guided low back pain injection. The robot is designed with a 4-DOF needle alignment module and a 2-DOF remotely actuated needle driver module. The 6-DOF fully actuated robot can operate inside the scanner bore during imaging; hence, minimizing the need of moving the patient in or out of the scanner during the procedure, and thus potentially reducing the procedure time and streamlining the workflow. The robot is built with a lightweight and compact structure that can be attached directly to the patient's lower back using straps; therefore, attenuating the effect of patient motion by moving with the patient. The novel remote actuation design of the needle driver module with beaded chain transmission can reduce the weight and profile on the patient, as well as minimize the imaging degradation caused by the actuation electronics. The free space positioning accuracy of the system was evaluated with an optical tracking system, demonstrating the mean absolute errors (MAE) of the tip position to be 0.99±0.46 mm and orientation to be 0.99±0.65°. Qualitative imaging quality evaluation was performed on a human volunteer, revealing minimal visible image degradation that should not affect the procedure. The mounting stability of the system was assessed on a human volunteer, indicating the 3D position variation of target movement with respect to the robot frame to be less than 0.7 mm.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2020 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9197534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39348468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large-Scale Volumetric Scene Reconstruction using LiDAR","authors":"Tilman Kuhner, Julius Kummerle","doi":"10.1109/ICRA40945.2020.9197388","DOIUrl":"https://doi.org/10.1109/ICRA40945.2020.9197388","url":null,"abstract":"Large-scale 3D scene reconstruction is an important task in autonomous driving and other robotics applications as having an accurate representation of the environment is necessary to safely interact with it. Reconstructions are used for numerous tasks ranging from localization and mapping to planning. In robotics, volumetric depth fusion is the method of choice for indoor applications since the emergence of commodity RGB-D cameras due to its robustness and high reconstruction quality. In this work we present an approach for volumetric depth fusion using LiDAR sensors as they are common on most autonomous cars. We present a framework for large-scale mapping of urban areas considering loop closures. Our method creates a meshed representation of an urban area from recordings over a distance of 3.7km with a high level of detail on consumer graphics hardware in several minutes. The whole process is fully automated and does not need any user interference. We quantitatively evaluate our results from a real world application. Also, we investigate the effects of the sensor model that we assume on reconstruction quality by using synthetic data.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"39 1","pages":"6261-6267"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82884048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olalekan Ogunmolu, Xinmin Liu, Nicholas Gans, Rodney D Wiersma
{"title":"Mechanism and Model of a Soft Robot for Head Stabilization in Cancer Radiation Therapy.","authors":"Olalekan Ogunmolu, Xinmin Liu, Nicholas Gans, Rodney D Wiersma","doi":"10.1109/icra40945.2020.9197007","DOIUrl":"https://doi.org/10.1109/icra40945.2020.9197007","url":null,"abstract":"<p><p>We present a parallel robot mechanism and the constitutive laws that govern the deformation of its constituent soft actuators. Our ultimate goal is the real-time motion-correction of a patient's head deviation from a target pose where the soft actuators control the position of the patient's cranial region on a treatment machine. We describe the mechanism, derive the stress-strain constitutive laws for the individual actuators and the inverse kinematics that prescribes a given deformation, and then present simulation results that validate our mathematical formulation. Our results demonstrate deformations consistent with our radially symmetric displacement formulation under a finite elastic deformation framework.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2020 ","pages":"4609-4615"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9197007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38649715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unified Intrinsic and Extrinsic Camera and LiDAR Calibration under Uncertainties","authors":"Julius Kummerle, Tilman Kuhner","doi":"10.1109/ICRA40945.2020.9197496","DOIUrl":"https://doi.org/10.1109/ICRA40945.2020.9197496","url":null,"abstract":"Many approaches for camera and LiDAR calibration are presented in literature but none of them estimates all intrinsic and extrinsic parameters simultaneously and therefore optimally in a probabilistic sense.In this work, we present a method to simultaneously estimate intrinsic and extrinsic parameters of cameras and LiDARs in a unified problem. We derive a probabilistic formulation that enables flawless integration of different measurement types without hand-tuned weights. An arbitrary number of cameras and LiDARs can be calibrated simultaneously. Measurements are not required to be time-synchronized. The method is designed to work with any camera model.In evaluation, we show that additional LiDAR measurements significantly improve intrinsic camera calibration. Further, we show on real data that our method achieves state-of-the-art calibration precision with high reliability.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"40 1","pages":"6028-6034"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86291431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contact Stability Analysis of Magnetically-Actuated Robotic Catheter Under Surface Motion.","authors":"Ran Hao, Tipakorn Greigarn, M Cenk Çavuşoğlu","doi":"10.1109/icra40945.2020.9196951","DOIUrl":"10.1109/icra40945.2020.9196951","url":null,"abstract":"<p><p>Contact force quality is one of the most critical factors for safe and effective lesion formation during cardiac ablation. The contact force and contact stability plays important roles in determining the lesion size and creating a gap-free lesion. In this paper, the contact stability of a novel magnetic resonance imaging (MRI)-actuated robotic catheter under tissue surface motion is studied. The robotic catheter is modeled using a pseudo-rigid-body model, and the contact model under surface constraint is provided. Two contact force control schemes to improve the contact stability of the catheter under heart surface motions are proposed and their performance are evaluated in simulation.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2020 ","pages":"4455-4462"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197595/pdf/nihms-1705040.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39010750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen Wenrui, Xia Zhilan, Lu Jingwen, Zhao Zilong, W. Yao-nan
{"title":"Design and Analysis of a Synergy-Inspired Three-Fingered Hand","authors":"Chen Wenrui, Xia Zhilan, Lu Jingwen, Zhao Zilong, W. Yao-nan","doi":"10.1109/ICRA40945.2020.9196901","DOIUrl":"https://doi.org/10.1109/ICRA40945.2020.9196901","url":null,"abstract":"Hand synergy from neuroscience provides an effective tool for anthropomorphic hands to realize versatile grasping with simple planning and control. This paper aims to extend the synergy-inspired design from anthropomorphic hands to multi-fingered robot hands. The synergy-inspired hands are not necessarily humanoid in morphology but perform primary characteristics and functions similar to the human hand. At first, the biomechanics of hand synergy is investigated. Three biomechanical characteristics of the human hand synergy are explored as a basis for the mechanical simplification of the robot hands. Secondly, according to the synergy characteristics, a three-fingered hand is designed, and its kinematic model is developed for the analysis of some typical grasping and manipulation functions. Finally, a prototype is developed and preliminary grasping experiments validate the effectiveness of the design and analysis.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"48 1","pages":"8942-8948"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87985244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frederic Monet, Shahriar Sefati, Pierre Lorre, Arthur Poiffaut, Samuel Kadoury, Mehran Armand, Iulian Iordachita, Raman Kashyap
{"title":"High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study.","authors":"Frederic Monet, Shahriar Sefati, Pierre Lorre, Arthur Poiffaut, Samuel Kadoury, Mehran Armand, Iulian Iordachita, Raman Kashyap","doi":"10.1109/icra40945.2020.9197454","DOIUrl":"https://doi.org/10.1109/icra40945.2020.9197454","url":null,"abstract":"<p><p>Flexible medical instruments, such as Continuum Dexterous Manipulators (CDM), constitute an important class of tools for minimally invasive surgery. Accurate CDM shape reconstruction during surgery is of great importance, yet a challenging task. Fiber Bragg grating (FBG) sensors have demonstrated great potential in shape sensing and consequently tip position estimation of CDMs. However, due to the limited number of sensing locations, these sensors can only accurately recover basic shapes, and become unreliable in the presence of obstacles or many inflection points such as s-bends. Optical Frequency Domain Reflectometry (OFDR), on the other hand, can achieve much higher spatial resolution, and can therefore accurately reconstruct more complex shapes. Additionally, Random Optical Gratings by Ultraviolet laser Exposure (ROGUEs) can be written in the fibers to increase signal to noise ratio of the sensors. In this comparison study, the tip position error is used as a metric to compare both FBG and OFDR shape reconstructions for a 35 mm long CDM developed for orthopedic surgeries, using a pair of stereo cameras as ground truth. Three sets of experiments were conducted to measure the accuracy of each technique in various surgical scenarios. The tip position error for the OFDR (and FBG) technique was found to be 0.32 (0.83) mm in free-bending environment, 0.41 (0.80) mm when interacting with obstacles, and 0.45 (2.27) mm in s-bending. Moreover, the maximum tip position error remains sub-millimeter for the OFDR reconstruction, while it reaches 3.40 mm for FBG reconstruction. These results propose a cost-effective, robust and more accurate alternative to FBG sensors for reconstructing complex CDM shapes.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2020 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9197454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39335086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}