不确定条件下相机和激光雷达内、外统一标定

Julius Kummerle, Tilman Kuhner
{"title":"不确定条件下相机和激光雷达内、外统一标定","authors":"Julius Kummerle, Tilman Kuhner","doi":"10.1109/ICRA40945.2020.9197496","DOIUrl":null,"url":null,"abstract":"Many approaches for camera and LiDAR calibration are presented in literature but none of them estimates all intrinsic and extrinsic parameters simultaneously and therefore optimally in a probabilistic sense.In this work, we present a method to simultaneously estimate intrinsic and extrinsic parameters of cameras and LiDARs in a unified problem. We derive a probabilistic formulation that enables flawless integration of different measurement types without hand-tuned weights. An arbitrary number of cameras and LiDARs can be calibrated simultaneously. Measurements are not required to be time-synchronized. The method is designed to work with any camera model.In evaluation, we show that additional LiDAR measurements significantly improve intrinsic camera calibration. Further, we show on real data that our method achieves state-of-the-art calibration precision with high reliability.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"40 1","pages":"6028-6034"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Unified Intrinsic and Extrinsic Camera and LiDAR Calibration under Uncertainties\",\"authors\":\"Julius Kummerle, Tilman Kuhner\",\"doi\":\"10.1109/ICRA40945.2020.9197496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many approaches for camera and LiDAR calibration are presented in literature but none of them estimates all intrinsic and extrinsic parameters simultaneously and therefore optimally in a probabilistic sense.In this work, we present a method to simultaneously estimate intrinsic and extrinsic parameters of cameras and LiDARs in a unified problem. We derive a probabilistic formulation that enables flawless integration of different measurement types without hand-tuned weights. An arbitrary number of cameras and LiDARs can be calibrated simultaneously. Measurements are not required to be time-synchronized. The method is designed to work with any camera model.In evaluation, we show that additional LiDAR measurements significantly improve intrinsic camera calibration. Further, we show on real data that our method achieves state-of-the-art calibration precision with high reliability.\",\"PeriodicalId\":73286,\"journal\":{\"name\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"volume\":\"40 1\",\"pages\":\"6028-6034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

文献中提出了许多相机和激光雷达校准方法,但没有一种方法可以同时估计所有的内在和外在参数,因此在概率意义上是最优的。在这项工作中,我们提出了一种在统一问题中同时估计相机和激光雷达的内在和外在参数的方法。我们推导了一个概率公式,使不同测量类型的完美集成无需手动调整权重。可以同时校准任意数量的摄像机和激光雷达。测量不需要时间同步。该方法适用于任何相机模型。在评估中,我们表明额外的LiDAR测量显着改善了相机的固有校准。此外,我们在实际数据上表明,我们的方法达到了最先进的校准精度和高可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified Intrinsic and Extrinsic Camera and LiDAR Calibration under Uncertainties
Many approaches for camera and LiDAR calibration are presented in literature but none of them estimates all intrinsic and extrinsic parameters simultaneously and therefore optimally in a probabilistic sense.In this work, we present a method to simultaneously estimate intrinsic and extrinsic parameters of cameras and LiDARs in a unified problem. We derive a probabilistic formulation that enables flawless integration of different measurement types without hand-tuned weights. An arbitrary number of cameras and LiDARs can be calibrated simultaneously. Measurements are not required to be time-synchronized. The method is designed to work with any camera model.In evaluation, we show that additional LiDAR measurements significantly improve intrinsic camera calibration. Further, we show on real data that our method achieves state-of-the-art calibration precision with high reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信