Shaohua Yin, Yingying Yang, Qin Wang, Wei Guo, Qian He, Lei Yuan, Keyi Si
{"title":"Association between abortion and all-cause and cause-specific premature mortality: a prospective cohort study from the UK Biobank","authors":"Shaohua Yin, Yingying Yang, Qin Wang, Wei Guo, Qian He, Lei Yuan, Keyi Si","doi":"10.34133/hds.0147","DOIUrl":"https://doi.org/10.34133/hds.0147","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Lv, Na Zeng, Mengyi Li, Jing Sun, Ning Wu, Mingze Xu, Qian Chen, Xinyu Zhao, Shuohua Chen, Wenjuan Liu, Xiaoshuai Li, Pengfei Zhao, Max Wintermark, Ying Hui, Jing Li, Shouling Wu, Zhenchang Wang
{"title":"Association Between Body Mass Index and Brain Health in Adults: A 16-Year Population-Based Cohort and Mendelian Randomization Study","authors":"Han Lv, Na Zeng, Mengyi Li, Jing Sun, Ning Wu, Mingze Xu, Qian Chen, Xinyu Zhao, Shuohua Chen, Wenjuan Liu, Xiaoshuai Li, Pengfei Zhao, Max Wintermark, Ying Hui, Jing Li, Shouling Wu, Zhenchang Wang","doi":"10.34133/hds.0087","DOIUrl":"https://doi.org/10.34133/hds.0087","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140085080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health data sciencePub Date : 2024-02-26eCollection Date: 2024-01-01DOI: 10.34133/hds.0116
Benson Shu Yan Lam, Amanda Man Ying Chu, Jacky Ngai Lam Chan, Mike Ka Pui So
{"title":"Do Scholars Respond Faster Than Google Trends in Discussing COVID-19 Issues? An Approach to Textual Big Data.","authors":"Benson Shu Yan Lam, Amanda Man Ying Chu, Jacky Ngai Lam Chan, Mike Ka Pui So","doi":"10.34133/hds.0116","DOIUrl":"10.34133/hds.0116","url":null,"abstract":"<p><p><b>Background:</b> The COVID-19 pandemic has posed various difficulties for policymakers, such as the identification of health issues, establishment of policy priorities, formulation of regulations, and promotion of economic competitiveness. Evidence-based practices and data-driven decision-making have been recognized as valuable tools for improving the policymaking process. Nevertheless, due to the abundance of data, there is a need to develop sophisticated analytical techniques and tools to efficiently extract and analyze the data. <b>Methods:</b> Using Oxford COVID-19 Government Response Tracker, we categorize the policy responses into 6 different categories: (a) containment and closure, (b) health systems, (c) vaccines, (d) economic, (e) country, and (f) others. We proposed a novel research framework to compare the response times of the scholars and the general public. To achieve this, we analyzed more than 400,000 research abstracts published over the past 2.5 years, along with text information from Google Trends as a proxy for topics of public concern. We introduced an innovative text-mining method: coherent topic clustering to analyze the huge number of abstracts. <b>Results:</b> Our results show that the research abstracts not only discussed almost all of the COVID-19 issues earlier than Google Trends did, but they also provided more in-depth coverage. This should help policymakers identify core COVID-19 issues and act earlier. Besides, our clustering method can better reflect the main messages of the abstracts than a recent advanced deep learning-based topic modeling tool. <b>Conclusion:</b> Scholars generally have a faster response in discussing COVID-19 issues than Google Trends.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health data sciencePub Date : 2024-02-23eCollection Date: 2024-01-01DOI: 10.34133/hds.0113
Yizhen Luo, Xing Yi Liu, Kai Yang, Kui Huang, Massimo Hong, Jiahuan Zhang, Yushuai Wu, Zaiqing Nie
{"title":"Toward Unified AI Drug Discovery with Multimodal Knowledge.","authors":"Yizhen Luo, Xing Yi Liu, Kai Yang, Kui Huang, Massimo Hong, Jiahuan Zhang, Yushuai Wu, Zaiqing Nie","doi":"10.34133/hds.0113","DOIUrl":"10.34133/hds.0113","url":null,"abstract":"<p><p><b>Background:</b> In real-world drug discovery, human experts typically grasp molecular knowledge of drugs and proteins from multimodal sources including molecular structures, structured knowledge from knowledge bases, and unstructured knowledge from biomedical literature. Existing multimodal approaches in AI drug discovery integrate either structured or unstructured knowledge independently, which compromises the holistic understanding of biomolecules. Besides, they fail to address the missing modality problem, where multimodal information is missing for novel drugs and proteins. <b>Methods:</b> In this work, we present KEDD, a unified, end-to-end deep learning framework that jointly incorporates both structured and unstructured knowledge for vast AI drug discovery tasks. The framework first incorporates independent representation learning models to extract the underlying characteristics from each modality. Then, it applies a feature fusion technique to calculate the prediction results. To mitigate the missing modality problem, we leverage sparse attention and a modality masking technique to reconstruct the missing features based on top relevant molecules. <b>Results:</b> Benefiting from structured and unstructured knowledge, our framework achieves a deeper understanding of biomolecules. KEDD outperforms state-of-the-art models by an average of 5.2% on drug-target interaction prediction, 2.6% on drug property prediction, 1.2% on drug-drug interaction prediction, and 4.1% on protein-protein interaction prediction. Through qualitative analysis, we reveal KEDD's promising potential in assisting real-world applications. <b>Conclusions:</b> By incorporating biomolecular expertise from multimodal knowledge, KEDD bears promise in accelerating drug discovery.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenhao Zhang, Yang Yang, Qinghua Cui, Dongyu Zhao, Chunmei Cui
{"title":"Identification and analysis of sex-biased copy number alterations","authors":"Chenhao Zhang, Yang Yang, Qinghua Cui, Dongyu Zhao, Chunmei Cui","doi":"10.34133/hds.0121","DOIUrl":"https://doi.org/10.34133/hds.0121","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140442547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adeolu Z Ogunleye, Chayanit Piyawajanusorn, G. Ghislat, Pedro Ballester
{"title":"Large-scale machine learning analysis reveals DNA-methylation and gene-expression response signatures for gemcitabine-treated pancreatic cancer","authors":"Adeolu Z Ogunleye, Chayanit Piyawajanusorn, G. Ghislat, Pedro Ballester","doi":"10.34133/hds.0108","DOIUrl":"https://doi.org/10.34133/hds.0108","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using mobile-phone data to assess socio-economic disparities in unhealthy food reliance during the COVID-19 pandemic","authors":"Charles Alba, Ruopeng An","doi":"10.34133/hds.0101","DOIUrl":"https://doi.org/10.34133/hds.0101","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139208949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transforming health care through a learning health system approach in the digital era: Chronic kidney disease management in China","authors":"Guilan Kong, Jinwei Wang, Hongbo Lin, Beiyan Bao, Charles Friedman, Luxia Zhang","doi":"10.34133/hds.0102","DOIUrl":"https://doi.org/10.34133/hds.0102","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139201723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Racha Gouareb, Alban Bornet, Dimitrios Proios, Sónia Gonçalves Pereira, Douglas Teodoro
{"title":"Detection of Patients at Risk of Multi-Drug Resistant Enterobacteriaceae Infection using Graph Neural Networks: a Retrospective Study","authors":"Racha Gouareb, Alban Bornet, Dimitrios Proios, Sónia Gonçalves Pereira, Douglas Teodoro","doi":"10.34133/hds.0099","DOIUrl":"https://doi.org/10.34133/hds.0099","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}