VP-SFDA: Visual Prompt Source-Free Domain Adaptation for Cross-Modal Medical Image.

Health data science Pub Date : 2025-01-07 eCollection Date: 2025-01-01 DOI:10.34133/hds.0143
Yixin Chen, Yan Wang, Zhaoheng Xie
{"title":"VP-SFDA: Visual Prompt Source-Free Domain Adaptation for Cross-Modal Medical Image.","authors":"Yixin Chen, Yan Wang, Zhaoheng Xie","doi":"10.34133/hds.0143","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Source-free unsupervised domain adaptation (SFUDA) methods aim to address the challenge of domain shift while preserving data privacy. Existing SFUDA approaches construct reliable and confident pseudo-labels for target-domain data through denoising methods, thereby guiding the training of the target-domain model. The effectiveness of denoising approaches is influenced by the degree of domain gap between the source and target domains. A marked shift can cause the pseudo-labels to be unreliable, even after applying denoising. <b>Methods:</b> We propose a novel 2-stage framework for SFUDA called visual prompt source-free domain adaptation (VP-SFDA). We propose input-specific visual prompt in the first stage, prompting process, which bridges the target-domain data to source-domain distribution. Our method utilizes visual prompts and batch normalization constraint to enable the alignment model to learn domain-specific knowledge and align the target-domain data with the source-domain contribution. The second stage is the adaptation process, which aims at optimizing the segmentation model from the source domain to the target domain. This is accomplished through the denoising techniques, ultimately enhancing the performance. <b>Results:</b> Our study presents a comparative analysis of several SFUDA techniques in the VP-SFDA framework across 4 tasks: abdominal magnetic resonance imaging (MRI) to computed tomography (CT), abdominal CT to MRI, cardiac MRI to CT, and cardiac CT to MRI. Notably, in the abdominal MRI to CT adaptation task, the VP-OS method achieved a remarkable improvement, increasing the average DICE score from 0.658 to 0.773 (<i>P</i> <math><mo><</mo></math> 0.01) and reducing the average surface distance (ASD) from 3.489 to 2.961 (<i>P</i> <math><mo><</mo></math> 0.01). Similarly, the VP-LD and VP-DPL methods also showed significant improvements over their base algorithms in both abdominal and cardiac MRI to CT tasks. <b>Conclusions:</b> This paper proposes VP-SFDA, a novel 2-stage framework for SFUDA in medical imaging, which achieves superior performance through input-specific visual prompts and batch normalization constraint for domain adaptation, coupled with denoising methods for enhanced results. Comparative experiments on 4 medical SFUDA tasks demonstrate that VO-SFDA surpasses existing methods, with ablation studies confirming the benefits of domain-specific patterns.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"5 ","pages":"0143"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Source-free unsupervised domain adaptation (SFUDA) methods aim to address the challenge of domain shift while preserving data privacy. Existing SFUDA approaches construct reliable and confident pseudo-labels for target-domain data through denoising methods, thereby guiding the training of the target-domain model. The effectiveness of denoising approaches is influenced by the degree of domain gap between the source and target domains. A marked shift can cause the pseudo-labels to be unreliable, even after applying denoising. Methods: We propose a novel 2-stage framework for SFUDA called visual prompt source-free domain adaptation (VP-SFDA). We propose input-specific visual prompt in the first stage, prompting process, which bridges the target-domain data to source-domain distribution. Our method utilizes visual prompts and batch normalization constraint to enable the alignment model to learn domain-specific knowledge and align the target-domain data with the source-domain contribution. The second stage is the adaptation process, which aims at optimizing the segmentation model from the source domain to the target domain. This is accomplished through the denoising techniques, ultimately enhancing the performance. Results: Our study presents a comparative analysis of several SFUDA techniques in the VP-SFDA framework across 4 tasks: abdominal magnetic resonance imaging (MRI) to computed tomography (CT), abdominal CT to MRI, cardiac MRI to CT, and cardiac CT to MRI. Notably, in the abdominal MRI to CT adaptation task, the VP-OS method achieved a remarkable improvement, increasing the average DICE score from 0.658 to 0.773 (P < 0.01) and reducing the average surface distance (ASD) from 3.489 to 2.961 (P < 0.01). Similarly, the VP-LD and VP-DPL methods also showed significant improvements over their base algorithms in both abdominal and cardiac MRI to CT tasks. Conclusions: This paper proposes VP-SFDA, a novel 2-stage framework for SFUDA in medical imaging, which achieves superior performance through input-specific visual prompts and batch normalization constraint for domain adaptation, coupled with denoising methods for enhanced results. Comparative experiments on 4 medical SFUDA tasks demonstrate that VO-SFDA surpasses existing methods, with ablation studies confirming the benefits of domain-specific patterns.

跨模态医学图像的视觉提示无源域自适应。
背景:无源无监督域自适应(SFUDA)方法旨在解决域转移的挑战,同时保护数据隐私。现有的SFUDA方法通过去噪方法为目标域数据构建可靠、置信的伪标签,从而指导目标域模型的训练。降噪方法的有效性受源域和目标域之间的域间隙程度的影响。明显的偏移会导致伪标签不可靠,即使在应用去噪之后也是如此。方法:提出了一种新的两阶段SFUDA框架,称为视觉提示无源域自适应(VP-SFDA)。我们在第一阶段提出了特定于输入的视觉提示,即提示过程,它将目标域的数据与源域的分布联系起来。我们的方法利用可视化提示和批处理规范化约束,使对齐模型能够学习特定于领域的知识,并将目标领域的数据与源领域的贡献进行对齐。第二阶段是自适应过程,目的是从源域到目标域对分割模型进行优化。这是通过去噪技术来实现的,最终提高了性能。结果:我们的研究对VP-SFDA框架下的几种SFUDA技术进行了4项任务的比较分析:腹部磁共振成像(MRI)到计算机断层扫描(CT)、腹部CT到MRI、心脏MRI到CT和心脏CT到MRI。值得注意的是,在腹部MRI到CT的适应任务中,VP-OS方法取得了显著的改善,将DICE平均评分从0.658提高到0.773 (P 0.01),将平均表面距离(ASD)从3.489降低到2.961 (P 0.01)。同样,VP-LD和VP-DPL方法在腹部和心脏MRI到CT任务中也比它们的基本算法有了显著的改进。结论:本文提出了一种新的两阶段医学成像SFUDA框架VP-SFDA,该框架通过输入特定的视觉提示和批量归一化约束进行领域自适应,并结合去噪方法增强结果,取得了优异的性能。4种医学SFUDA任务的对比实验表明,VO-SFDA优于现有方法,消融研究证实了特定领域模式的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信