医疗保健中的联邦学习:结构化数据分析的工程和统计方法的基准比较。

Health data science Pub Date : 2024-12-04 eCollection Date: 2024-01-01 DOI:10.34133/hds.0196
Siqi Li, Di Miao, Qiming Wu, Chuan Hong, Danny D'Agostino, Xin Li, Yilin Ning, Yuqing Shang, Ziwen Wang, Molei Liu, Huazhu Fu, Marcus Eng Hock Ong, Hamed Haddadi, Nan Liu
{"title":"医疗保健中的联邦学习:结构化数据分析的工程和统计方法的基准比较。","authors":"Siqi Li, Di Miao, Qiming Wu, Chuan Hong, Danny D'Agostino, Xin Li, Yilin Ning, Yuqing Shang, Ziwen Wang, Molei Liu, Huazhu Fu, Marcus Eng Hock Ong, Hamed Haddadi, Nan Liu","doi":"10.34133/hds.0196","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Federated learning (FL) holds promise for safeguarding data privacy in healthcare collaborations. While the term \"FL\" was originally coined by the engineering community, the statistical field has also developed privacy-preserving algorithms, though these are less recognized. Our goal was to bridge this gap with the first comprehensive comparison of FL frameworks from both domains. <b>Methods:</b> We assessed 7 FL frameworks, encompassing both engineering-based and statistical FL algorithms, and compared them against local and centralized modeling of logistic regression and least absolute shrinkage and selection operator (Lasso). Our evaluation utilized both simulated data and real-world emergency department data, focusing on comparing both estimated model coefficients and the performance of model predictions. <b>Results:</b> The findings reveal that statistical FL algorithms produce much less biased estimates of model coefficients. Conversely, engineering-based methods can yield models with slightly better prediction performance, occasionally outperforming both centralized and statistical FL models. <b>Conclusion:</b> This study underscores the relative strengths and weaknesses of both types of methods, providing recommendations for their selection based on distinct study characteristics. Furthermore, we emphasize the critical need to raise awareness of and integrate these methods into future applications of FL within the healthcare domain.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"4 ","pages":"0196"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615161/pdf/","citationCount":"0","resultStr":"{\"title\":\"Federated Learning in Healthcare: A Benchmark Comparison of Engineering and Statistical Approaches for Structured Data Analysis.\",\"authors\":\"Siqi Li, Di Miao, Qiming Wu, Chuan Hong, Danny D'Agostino, Xin Li, Yilin Ning, Yuqing Shang, Ziwen Wang, Molei Liu, Huazhu Fu, Marcus Eng Hock Ong, Hamed Haddadi, Nan Liu\",\"doi\":\"10.34133/hds.0196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Federated learning (FL) holds promise for safeguarding data privacy in healthcare collaborations. While the term \\\"FL\\\" was originally coined by the engineering community, the statistical field has also developed privacy-preserving algorithms, though these are less recognized. Our goal was to bridge this gap with the first comprehensive comparison of FL frameworks from both domains. <b>Methods:</b> We assessed 7 FL frameworks, encompassing both engineering-based and statistical FL algorithms, and compared them against local and centralized modeling of logistic regression and least absolute shrinkage and selection operator (Lasso). Our evaluation utilized both simulated data and real-world emergency department data, focusing on comparing both estimated model coefficients and the performance of model predictions. <b>Results:</b> The findings reveal that statistical FL algorithms produce much less biased estimates of model coefficients. Conversely, engineering-based methods can yield models with slightly better prediction performance, occasionally outperforming both centralized and statistical FL models. <b>Conclusion:</b> This study underscores the relative strengths and weaknesses of both types of methods, providing recommendations for their selection based on distinct study characteristics. Furthermore, we emphasize the critical need to raise awareness of and integrate these methods into future applications of FL within the healthcare domain.</p>\",\"PeriodicalId\":73207,\"journal\":{\"name\":\"Health data science\",\"volume\":\"4 \",\"pages\":\"0196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615161/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/hds.0196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:联邦学习(FL)有望在医疗保健协作中保护数据隐私。虽然术语“FL”最初是由工程界创造的,但统计领域也开发了隐私保护算法,尽管这些算法不太为人所知。我们的目标是通过首次全面比较两个领域的FL框架来弥合这一差距。方法:我们评估了7个FL框架,包括基于工程和统计的FL算法,并将它们与逻辑回归的局部和集中建模以及最小绝对收缩和选择算子(Lasso)进行了比较。我们的评估利用了模拟数据和现实世界的急诊科数据,重点比较了估计的模型系数和模型预测的性能。结果:研究结果表明,统计FL算法产生的模型系数的偏差估计要小得多。相反,基于工程的方法可以产生稍微更好的预测性能的模型,偶尔优于集中式和统计FL模型。结论:本研究强调了这两种方法的相对优势和劣势,并根据不同的研究特征为其选择提供了建议。此外,我们强调迫切需要提高对这些方法的认识,并将这些方法集成到医疗保健领域FL的未来应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Learning in Healthcare: A Benchmark Comparison of Engineering and Statistical Approaches for Structured Data Analysis.

Background: Federated learning (FL) holds promise for safeguarding data privacy in healthcare collaborations. While the term "FL" was originally coined by the engineering community, the statistical field has also developed privacy-preserving algorithms, though these are less recognized. Our goal was to bridge this gap with the first comprehensive comparison of FL frameworks from both domains. Methods: We assessed 7 FL frameworks, encompassing both engineering-based and statistical FL algorithms, and compared them against local and centralized modeling of logistic regression and least absolute shrinkage and selection operator (Lasso). Our evaluation utilized both simulated data and real-world emergency department data, focusing on comparing both estimated model coefficients and the performance of model predictions. Results: The findings reveal that statistical FL algorithms produce much less biased estimates of model coefficients. Conversely, engineering-based methods can yield models with slightly better prediction performance, occasionally outperforming both centralized and statistical FL models. Conclusion: This study underscores the relative strengths and weaknesses of both types of methods, providing recommendations for their selection based on distinct study characteristics. Furthermore, we emphasize the critical need to raise awareness of and integrate these methods into future applications of FL within the healthcare domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信