Frontiers in neuroimaging最新文献

筛选
英文 中文
Fractional amplitude of low-frequency fluctuations associated with μ-opioid and dopamine receptor distributions in the central nervous system after high-intensity exercise bouts. 高强度运动后中枢神经系统中与μ-阿片受体和多巴胺受体分布相关的低频波动的分数振幅。
Frontiers in neuroimaging Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1332384
Henning Boecker, Marcel Daamen, Angelika Maurer, Luisa Bodensohn, Judith Werkhausen, Marvin Lohaus, Christian Manunzio, Ursula Manunzio, Alexander Radbruch, Ulrike Attenberger, Juergen Dukart, Neeraj Upadhyay
{"title":"Fractional amplitude of low-frequency fluctuations associated with μ-opioid and dopamine receptor distributions in the central nervous system after high-intensity exercise bouts.","authors":"Henning Boecker, Marcel Daamen, Angelika Maurer, Luisa Bodensohn, Judith Werkhausen, Marvin Lohaus, Christian Manunzio, Ursula Manunzio, Alexander Radbruch, Ulrike Attenberger, Juergen Dukart, Neeraj Upadhyay","doi":"10.3389/fnimg.2024.1332384","DOIUrl":"10.3389/fnimg.2024.1332384","url":null,"abstract":"<p><strong>Introduction: </strong>Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses.</p><p><strong>Methods: </strong>Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with \"reward\" and \"emotion.\"</p><p><strong>Results: </strong>Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and μ-opioidergic receptor distributions within the 'reward' network.</p><p><strong>Discussion: </strong>These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1332384"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New organizational principles and 3D cytoarchitectonic maps of the dorsolateral prefrontal cortex in the human brain. 人脑背外侧前额叶皮层的新组织原理和三维细胞架构图。
Frontiers in neuroimaging Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI: 10.3389/fnimg.2024.1339244
Ariane Bruno, Kimberley Lothmann, Sebastian Bludau, Hartmut Mohlberg, Katrin Amunts
{"title":"New organizational principles and 3D cytoarchitectonic maps of the dorsolateral prefrontal cortex in the human brain.","authors":"Ariane Bruno, Kimberley Lothmann, Sebastian Bludau, Hartmut Mohlberg, Katrin Amunts","doi":"10.3389/fnimg.2024.1339244","DOIUrl":"10.3389/fnimg.2024.1339244","url":null,"abstract":"<p><p>Areas of the dorsolateral prefrontal cortex (DLPFC) are part of the frontoparietal control, default mode, salience, and ventral attention networks. The DLPFC is involved in executive functions, like working memory, value encoding, attention, decision-making, and behavioral control. This functional heterogeneity is not reflected in existing neuroanatomical maps. For example, previous cytoarchitectonic studies have divided the DLPFC into two or four areas. Macroanatomical parcellations of this region rely on gyri and sulci, which are not congruent with cytoarchitectonic parcellations. Therefore, this study aimed to provide a microstructural analysis of the human DLPFC and 3D maps of cytoarchitectonic areas to help address the observed functional variability in studies of the DLPFC. We analyzed ten human post-mortem brains in serial cell-body stained brain sections and mapped areal boundaries using a statistical image analysis approach. Five new areas (i.e., SFG2, SFG3, SFG4, MFG4, and MFG5) were identified on the superior and middle frontal gyrus, i.e., regions corresponding to parts of Brodmann areas 9 and 46. Gray level index profiles were used to determine interregional cytoarchitectural differences. The five new areas were reconstructed in 3D, and probability maps were generated in commonly used reference spaces, considering the variability of areas in stereotaxic space. Hierarchical cluster analysis revealed a high degree of similarity within the identified DLPFC areas while neighboring areas (frontal pole, Broca's region, area 8, and motoric areas) were separable. Comparisons with functional imaging studies revealed specific functional profiles of the DLPFC areas. Our results indicate that the new areas do not follow a simple organizational gradient assumption in the DLPFC. Instead, they are more similar to those of the ventrolateral prefrontal cortex (Broca's areas 44, 45) and frontopolar areas (Fp1, Fp2) than to the more posterior areas. Within the DLPFC, the cytoarchitectonic similarities between areas do not seem to follow a simple anterior-to-posterior gradient either, but cluster along other principles. The new maps are part of the publicly available Julich Brain Atlas and provide a microstructural reference for existing and future imaging studies. Thus, our study represents a further step toward deciphering the structural-functional organization of the human prefrontal cortex.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1339244"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements 阳极和阴极高清 TDCS 对手指自主运动过程中感觉运动活动的对比 MEG 效果
Frontiers in neuroimaging Pub Date : 2024-02-05 DOI: 10.3389/fnimg.2024.1341732
Jed A. Meltzer, Gayatri Sivaratnam, Tiffany Deschamps, Maryam Zadeh, Catherine Li, Faranak Farzan, Alexander Francois-Nienaber
{"title":"Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements","authors":"Jed A. Meltzer, Gayatri Sivaratnam, Tiffany Deschamps, Maryam Zadeh, Catherine Li, Faranak Farzan, Alexander Francois-Nienaber","doi":"10.3389/fnimg.2024.1341732","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1341732","url":null,"abstract":"Protocols for noninvasive brain stimulation (NIBS) are generally categorized as “excitatory” or “inhibitory” based on their ability to produce short-term modulation of motor-evoked potentials (MEPs) in peripheral muscles, when applied to motor cortex. Anodal and cathodal stimulation are widely considered excitatory and inhibitory, respectively, on this basis. However, it is poorly understood whether such polarity-dependent changes apply for neural signals generated during task performance, at rest, or in response to sensory stimulation.To characterize such changes, we measured spontaneous and movement-related neural activity with magnetoencephalography (MEG) before and after high-definition transcranial direct-current stimulation (HD-TDCS) of the left motor cortex (M1), while participants performed simple finger movements with the left and right hands.Anodal HD-TDCS (excitatory) decreased the movement-related cortical fields (MRCF) localized to left M1 during contralateral right finger movements while cathodal HD-TDCS (inhibitory), increased them. In contrast, oscillatory signatures of voluntary motor output were not differentially affected by the two stimulation protocols, and tended to decrease in magnitude over the course of the experiment regardless. Spontaneous resting state oscillations were not affected either.MRCFs are thought to reflect reafferent proprioceptive input to motor cortex following movements. Thus, these results suggest that processing of incoming sensory information may be affected by TDCS in a polarity-dependent manner that is opposite that seen for MEPs—increases in cortical excitability as defined by MEPs may correspond to reduced responses to afferent input, and vice-versa.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"1 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139802504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements 阳极和阴极高清 TDCS 对手指自主运动过程中感觉运动活动的对比 MEG 效果
Frontiers in neuroimaging Pub Date : 2024-02-05 DOI: 10.3389/fnimg.2024.1341732
Jed A. Meltzer, Gayatri Sivaratnam, Tiffany Deschamps, Maryam Zadeh, Catherine Li, Faranak Farzan, Alexander Francois-Nienaber
{"title":"Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements","authors":"Jed A. Meltzer, Gayatri Sivaratnam, Tiffany Deschamps, Maryam Zadeh, Catherine Li, Faranak Farzan, Alexander Francois-Nienaber","doi":"10.3389/fnimg.2024.1341732","DOIUrl":"https://doi.org/10.3389/fnimg.2024.1341732","url":null,"abstract":"Protocols for noninvasive brain stimulation (NIBS) are generally categorized as “excitatory” or “inhibitory” based on their ability to produce short-term modulation of motor-evoked potentials (MEPs) in peripheral muscles, when applied to motor cortex. Anodal and cathodal stimulation are widely considered excitatory and inhibitory, respectively, on this basis. However, it is poorly understood whether such polarity-dependent changes apply for neural signals generated during task performance, at rest, or in response to sensory stimulation.To characterize such changes, we measured spontaneous and movement-related neural activity with magnetoencephalography (MEG) before and after high-definition transcranial direct-current stimulation (HD-TDCS) of the left motor cortex (M1), while participants performed simple finger movements with the left and right hands.Anodal HD-TDCS (excitatory) decreased the movement-related cortical fields (MRCF) localized to left M1 during contralateral right finger movements while cathodal HD-TDCS (inhibitory), increased them. In contrast, oscillatory signatures of voluntary motor output were not differentially affected by the two stimulation protocols, and tended to decrease in magnitude over the course of the experiment regardless. Spontaneous resting state oscillations were not affected either.MRCFs are thought to reflect reafferent proprioceptive input to motor cortex following movements. Thus, these results suggest that processing of incoming sensory information may be affected by TDCS in a polarity-dependent manner that is opposite that seen for MEPs—increases in cortical excitability as defined by MEPs may correspond to reduced responses to afferent input, and vice-versa.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"223 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139862385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Siamese model for collateral score prediction from computed tomography angiography images in acute ischemic stroke 根据计算机断层扫描血管造影图像预测急性缺血性脑卒中侧支评分的连体模型
Frontiers in neuroimaging Pub Date : 2024-01-11 DOI: 10.3389/fnimg.2023.1239703
Valerio Fortunati, Jiahang Su, L. Wolff, P. V. van Doormaal, Jeanette Hofmeijer, Jasper Martens, R. Bokkers, W. V. van Zwam, A. van der Lugt, Theo van Walsum
{"title":"Siamese model for collateral score prediction from computed tomography angiography images in acute ischemic stroke","authors":"Valerio Fortunati, Jiahang Su, L. Wolff, P. V. van Doormaal, Jeanette Hofmeijer, Jasper Martens, R. Bokkers, W. V. van Zwam, A. van der Lugt, Theo van Walsum","doi":"10.3389/fnimg.2023.1239703","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1239703","url":null,"abstract":"Imaging biomarkers, such as the collateral score as determined from Computed Tomography Angiography (CTA) images, play a role in treatment decision making for acute stroke patients. In this manuscript, we present an end-to-end learning approach for automatic determination of a collateral score from a CTA image. Our aim was to investigate whether such end-to-end learning approaches can be used for this classification task, and whether the resulting classification can be used in existing outcome prediction models.The method consists of a preprocessing step, where the CTA image is aligned to an atlas and divided in the two hemispheres: the affected side and the healthy side. Subsequently, a VoxResNet based convolutional neural network is used to extract features at various resolutions from the input images. This is done by using a Siamese model, such that the classification is driven by the comparison between the affected and healthy using a unique set of features for both hemispheres. After masking the resulting features for both sides with the vascular region and global average pooling (per hemisphere) and concatenation of the resulting features, a fully connected layer is used to determine the categorized collateral score.Several experiments have been performed to optimize the model hyperparameters and training procedure, and to validate the final model performance. The hyperparameter optimization and subsequent model training was done using CTA images from the MR CLEAN Registry, a Dutch multi-center multi-vendor registry of acute stroke patients that underwent endovascular treatment. A separate set of images, from the MR CLEAN Trial, served as an external validation set, where collateral scoring was assessed and compared with both human observers and a recent more traditional model. In addition, the automated collateral scores have been used in an existing functional outcome prediction model that uses both imaging and non-imaging clinical parameters.The results show that end-to-end learning of collateral scoring in CTA images is feasible, and does perform similar to more traditional methods, and the performance also is within the inter-observer variation. Furthermore, the results demonstrate that the end-to-end classification results also can be used in an existing functional outcome prediction model.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139438260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional associations of white matter integrity and neurological, post-traumatic stress disorder and autonomic symptoms in Veterans with and without history of loss of consciousness in mild TBI 有无轻度创伤性脑损伤意识丧失史退伍军人的白质完整性与神经系统、创伤后应激障碍和自律神经症状的区域联系
Frontiers in neuroimaging Pub Date : 2024-01-10 DOI: 10.3389/fnimg.2023.1265001
Abigail B. Waters, Sarah A Bottari, Laura C. Jones, Damon G. Lamb, Gregory F. Lewis, John B. Williamson
{"title":"Regional associations of white matter integrity and neurological, post-traumatic stress disorder and autonomic symptoms in Veterans with and without history of loss of consciousness in mild TBI","authors":"Abigail B. Waters, Sarah A Bottari, Laura C. Jones, Damon G. Lamb, Gregory F. Lewis, John B. Williamson","doi":"10.3389/fnimg.2023.1265001","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1265001","url":null,"abstract":"Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) share overlapping symptom presentations and are highly comorbid conditions among Veteran populations. Despite elevated presentations of PTSD after mTBI, mechanisms linking the two are unclear, although both have been associated with alterations in white matter and disruptions in autonomic regulation. The present study aimed to determine if there is regional variability in white matter correlates of symptom severity and autonomic functioning in a mixed sample of Veterans with and without PTSD and/or mTBI (N = 77).Diffusion-weighted images were processed to extract fractional anisotropy (FA) values for major white matter structures. The PTSD Checklist-Military version (PCL-M) and Neurobehavioral Symptom Inventory (NSI) were used to determine symptom domains within PTSD and mTBI. Autonomic function was assessed using continuous blood pressure and respiratory sinus arrythmia during a static, standing angle positional test. Mixed-effect models were used to assess the regional specificity of associations between symptom severity and white matter, with FA, global symptom severity (score), and white matter tract (tract) as predictors. Additional interaction terms of symptom domain (i.e., NSI and PCL-M subscales) and loss of consciousness (LoC) were added to evaluate potential moderating effects. A parallel analysis was conducted to explore concordance with autonomic functioning.Results from the two-way Score × Tract interaction suggested that global symptom severity was associated with FA in the cingulum angular bundle (positive) and uncinate fasciculus (negative) only, without variability by symptom domain. We also found regional specificity in the relationship between FA and autonomic function, such that FA was positively associated with autonomic function in all tracts except the cingulum angular bundle. History of LoC moderated the association for both global symptom severity and autonomic function.Our findings are consistent with previous literature suggesting that there is significant overlap in the symptom presentation in TBI and PTSD, and white matter variability associated with LoC in mTBI may be associated with increased PTSD-spectra symptoms. Further research on treatment response in patients with both mTBI history and PTSD incorporating imaging and autonomic assessment may be valuable in understanding the role of brain injury in treatment outcomes and inform treatment design.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reappraisal of the default mode and frontoparietal networks in the common marmoset brain. 重新评估普通狨猴大脑中的默认模式和前顶叶网络。
Frontiers in neuroimaging Pub Date : 2024-01-09 eCollection Date: 2023-01-01 DOI: 10.3389/fnimg.2023.1345643
Takuto Okuno, Noritaka Ichinohe, Alexander Woodward
{"title":"A reappraisal of the default mode and frontoparietal networks in the common marmoset brain.","authors":"Takuto Okuno, Noritaka Ichinohe, Alexander Woodward","doi":"10.3389/fnimg.2023.1345643","DOIUrl":"10.3389/fnimg.2023.1345643","url":null,"abstract":"<p><p>In recent years the common marmoset homolog of the human default mode network (DMN) has been a hot topic of discussion in the marmoset research field. Previously, the posterior cingulate cortex regions (PGM, A19M) and posterior parietal cortex regions (LIP, MIP) were defined as the DMN, but some studies claim that these form the frontoparietal network (FPN). We restarted from a neuroanatomical point of view and identified two DMN candidates: Comp-A (which has been called both the DMN and FPN) and Comp-B. We performed GLM analysis on auditory task-fMRI and found Comp-B to be more appropriate as the DMN, and Comp-A as the FPN. Additionally, through fingerprint analysis, a DMN and FPN in the tasking human was closer to the resting common marmoset. The human DMN appears to have an advanced function that may be underdeveloped in the common marmoset brain.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1345643"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetries and hemispheric interaction in the auditory system of elderly people 老年人听觉系统的不对称性和半球相互作用
Frontiers in neuroimaging Pub Date : 2024-01-03 DOI: 10.3389/fnimg.2023.1320989
Nicole Angenstein
{"title":"Asymmetries and hemispheric interaction in the auditory system of elderly people","authors":"Nicole Angenstein","doi":"10.3389/fnimg.2023.1320989","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1320989","url":null,"abstract":"Age-related changes of asymmetries in the auditory system and decreasing efficiency of hemispheric interaction have been discussed for some time. This mini-review discusses recent neuroimaging studies on alterations in lateralization of cortical processing and structural changes concerning the division of labor and interaction between hemispheres during auditory processing in elderly people with the focus on people without severe hearing loss. Several changes of asymmetries in anatomy, function and neurotransmitter concentration were observed in auditory cortical areas of older compared to younger adults. It was shown that connections between left and right auditory cortex are reduced during aging. Functionally, aging seems to lead to a reduction in asymmetry of auditory processing. However, the results do not always point into the same direction. Furthermore, correlations between function, anatomy and behavior in the left and right hemisphere appear to differ between younger and older adults. The changes in auditory cortex asymmetries with aging might be due to compensation of declining processing capacities, but at the same time these mechanisms could impair the balanced division of labor between the two hemispheres that is required for the processing of complex auditory stimuli such as speech. Neuroimaging studies are essential to follow the slow changes with aging as in the beginning no behavioral effects might be visible due to compensation. Future studies should control well for peripheral hearing loss and cognitive decline. Furthermore, for the interpretability of results it is necessary to use specific tasks with well-controlled task difficulty.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"57 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recalibrating single-study effect sizes using hierarchical Bayesian models 利用分层贝叶斯模型重新校准单一研究效应大小
Frontiers in neuroimaging Pub Date : 2023-12-21 DOI: 10.3389/fnimg.2023.1138193
Zhipeng Cao, Matthew McCabe, Peter Callas, R. Cupertino, J. Ottino-González, Alistair Murphy, Devarshi Pancholi, N. Schwab, Orr Catherine, Kent Hutchison, J. Cousijn, Alain Dagher, John J. Foxe, A. Goudriaan, Robert Hester, Chiang‐Shan R. Li, Wesley K. Thompson, Angelica M. Morales, Edythe D. London, V. Lorenzetti, M. Luijten, Rocio Martin-Santos, R. Momenan, Martin P. Paulus, L. Schmaal, Rajita Sinha, Nadia Solowij, D. Stein, Elliot A. Stein, A. Uhlmann, R. V. van Holst, D. Veltman, R. Wiers, Murat Yücel, Sheng Zhang, P. Conrod, S. Mackey, Hugh Garavan
{"title":"Recalibrating single-study effect sizes using hierarchical Bayesian models","authors":"Zhipeng Cao, Matthew McCabe, Peter Callas, R. Cupertino, J. Ottino-González, Alistair Murphy, Devarshi Pancholi, N. Schwab, Orr Catherine, Kent Hutchison, J. Cousijn, Alain Dagher, John J. Foxe, A. Goudriaan, Robert Hester, Chiang‐Shan R. Li, Wesley K. Thompson, Angelica M. Morales, Edythe D. London, V. Lorenzetti, M. Luijten, Rocio Martin-Santos, R. Momenan, Martin P. Paulus, L. Schmaal, Rajita Sinha, Nadia Solowij, D. Stein, Elliot A. Stein, A. Uhlmann, R. V. van Holst, D. Veltman, R. Wiers, Murat Yücel, Sheng Zhang, P. Conrod, S. Mackey, Hugh Garavan","doi":"10.3389/fnimg.2023.1138193","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1138193","url":null,"abstract":"There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance.We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method.The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = −0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments.Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"40 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
This is no “ICA bug”: response to the article, “ICA's bug: how ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing” 这不是 "ICA 的错误":对文章 "ICA 的错误:脑电图电极插值和不正确的重新参照导致的有效等级缺陷如何产生幽灵 IC "的回应
Frontiers in neuroimaging Pub Date : 2023-12-21 DOI: 10.3389/fnimg.2023.1331404
Arnaud Delorme, S. Makeig
{"title":"This is no “ICA bug”: response to the article, “ICA's bug: how ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing”","authors":"Arnaud Delorme, S. Makeig","doi":"10.3389/fnimg.2023.1331404","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1331404","url":null,"abstract":"","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"52 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138951190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信