Adam C Searleman, Yajun Ma, Srihari Sampath, Srinath Sampath, Robert Bussell, Eric Y Chang, Lisa Deaton, Andrew M Schumacher, Jiang Du
{"title":"三维反转恢复超短回波时间核磁共振成像可检测铜绿素治疗小鼠的脱髓鞘现象。","authors":"Adam C Searleman, Yajun Ma, Srihari Sampath, Srinath Sampath, Robert Bussell, Eric Y Chang, Lisa Deaton, Andrew M Schumacher, Jiang Du","doi":"10.3389/fnimg.2024.1356713","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model.</p><p><strong>Methods: </strong>Non-aqueous myelin protons have ultrashort T<sub>2</sub>s and are \"invisible\" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T<sub>2</sub> water signal so that the remaining signal is from the ultrashort T<sub>2</sub> myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (<i>n</i> = 4) or control chow (<i>n</i> = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin.</p><p><strong>Results: </strong>IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content.</p><p><strong>Conclusions: </strong>3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1356713"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111995/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D inversion recovery ultrashort echo time MRI can detect demyelination in cuprizone-treated mice.\",\"authors\":\"Adam C Searleman, Yajun Ma, Srihari Sampath, Srinath Sampath, Robert Bussell, Eric Y Chang, Lisa Deaton, Andrew M Schumacher, Jiang Du\",\"doi\":\"10.3389/fnimg.2024.1356713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model.</p><p><strong>Methods: </strong>Non-aqueous myelin protons have ultrashort T<sub>2</sub>s and are \\\"invisible\\\" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T<sub>2</sub> water signal so that the remaining signal is from the ultrashort T<sub>2</sub> myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (<i>n</i> = 4) or control chow (<i>n</i> = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin.</p><p><strong>Results: </strong>IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content.</p><p><strong>Conclusions: </strong>3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.</p>\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"3 \",\"pages\":\"1356713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2024.1356713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2024.1356713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目的:测试反转恢复超短回波时间(IR-UTE)核磁共振成像(MRI)使用标准铜绿素小鼠模型直接检测小鼠脱髓鞘的能力:方法:非水髓鞘质子具有超短 T2,在传统磁共振成像序列中 "看不见",但在 UTE 序列中可以检测到。IR-UTE序列使用绝热反转恢复准备来抑制长T2水信号,使剩余信号来自超短T2髓鞘成分。在这项研究中,8只8周大的C57BL/6小鼠被喂食铜绿素(n = 4)或对照组饲料(n = 4)5周,然后通过三维IR-UTE MRI成像。比较了大脑主要白质束中 IR-UTE 信号的差异,并将其与髓鞘的 Luxol Fast Blue 组织化学标记物相关联:结果:经杯三氮处理的小鼠,在该模型中对脱髓鞘敏感的白质(如胼胝体)中,IR-UTE信号下降,而在对脱髓鞘有抵抗力的白质(如内囊)中,IR-UTE信号则没有下降。这些发现与髓鞘含量的组织化学染色结果相关:结论:三维红外UTE磁共振成像对铜绿素诱导的小鼠大脑脱髓鞘很敏感,是一种很有前途的测量大脑髓鞘含量的无创方法。
3D inversion recovery ultrashort echo time MRI can detect demyelination in cuprizone-treated mice.
Purpose: To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model.
Methods: Non-aqueous myelin protons have ultrashort T2s and are "invisible" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T2 water signal so that the remaining signal is from the ultrashort T2 myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (n = 4) or control chow (n = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin.
Results: IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content.
Conclusions: 3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.