Adam Waldbillig, Maria Baranova, Sarah Neumann, Jonathan Andrade, Sharan Sidhu
{"title":"Exploring <i>Psilocybe</i> spp. mycelium and fruiting body chemistry for potential therapeutic compounds.","authors":"Adam Waldbillig, Maria Baranova, Sarah Neumann, Jonathan Andrade, Sharan Sidhu","doi":"10.3389/ffunb.2023.1295223","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1295223","url":null,"abstract":"<p><p><i>Psilocybe</i> mushrooms, otherwise known as \"magic\" mushrooms, owe their psychedelic effect to psilocin, a serotonin subtype 2A (5-HT<sub>2A</sub>) receptor agonist and metabolite of psilocybin, the primary indole alkaloid found in <i>Psilocybe</i> species. Metabolomics is an advanced fingerprinting tool that can be utilized to identify the differences among fungal life stages that may otherwise be unaccounted for. In this study, by using targeted and untargeted (metabolomic) multivariate analysis, we demonstrate that the chemical composition of <i>Psilocybe</i> differs among mycelia, grain mycelia, and fruiting bodies. The preferential accumulation of psilocybin, baeocystin, tryptophan, ergothioneine, and phenylethylamine in fruiting bodies differentiated them from mycelia; however, the levels of alpha-glycerylphosphorylcholine (α-GPC), <i>N-</i>acetylglucosamine, and trimethylglycine were found to be proportionally higher in mycelia than in fruiting bodies based on Pareto-scaled data. Considering the wealth of compounds with therapeutic potential that have been isolated from various fungal genera, it would be pertinent to study the compounds found in <i>Psilocybe</i> mycelia as potential naturally derived therapeutic targets.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1295223"},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael F Allen, Hannah Shulman, Philip W Rundel, Thomas C Harmon, Emma L Aronson
{"title":"Leaf-cutter ants - mycorrhizal fungi: observations and research questions from an unexpected mutualism.","authors":"Michael F Allen, Hannah Shulman, Philip W Rundel, Thomas C Harmon, Emma L Aronson","doi":"10.3389/ffunb.2023.1241916","DOIUrl":"10.3389/ffunb.2023.1241916","url":null,"abstract":"<p><p>Leaf-cutter ants (LCAs) are widely distributed and alter the physical and biotic architecture above and below ground. In neotropical rainforests, they create aboveground and belowground disturbance gaps that facilitate oxygen and carbon dioxide exchange. Within the hyperdiverse neotropical rainforests, arbuscular mycorrhizal (AM) fungi occupy nearly all of the forest floor. Nearly every cubic centimeter of soil contains a network of hyphae of Glomeromycotina, fungi that form arbuscular mycorrhizae. Our broad question is as follows: how can alternative mycorrhizae, which are-especially ectomycorrhizae-essential for the survival of some plant species, become established? Specifically, is there an ant-mycorrhizal fungus interaction that facilitates their establishment in these hyperdiverse ecosystems? In one lowland Costa Rican rainforest, nests of the LCA <i>Atta cephalotes</i> cover approximately 1.2% of the land surface that is broadly scattered throughout the forest. On sequencing the DNA from soil organisms, we found the inocula of many AM fungi in their nests, but the nests also contained the inocula of ectomycorrhizal, orchid mycorrhizal, and ericoid mycorrhizal fungi, including <i>Scleroderma sinnamariense</i>, a fungus critical to <i>Gnetum leyboldii</i>, an obligate ectomycorrhizal plant. When the nests were abandoned, new root growth into the nest offered opportunities for new mycorrhizal associations to develop. Thus, the patches created by LCAs appear to be crucial sites for the establishment and survival of shifting mycorrhizal plant-fungal associations, in turn facilitating the high diversity of these communities. A better understanding of the interactions of organisms, including cross-kingdom and ant-mycorrhizal fungal interactions, would improve our understanding of how these ecosystems might tolerate environmental change.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1241916"},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia N Chulze, Sheryl Tittlemier, Adriana M Torres
{"title":"Editorial: Fusarium species as plant and human pathogens, mycotoxin producers, and biotechnological importance.","authors":"Sofia N Chulze, Sheryl Tittlemier, Adriana M Torres","doi":"10.3389/ffunb.2023.1320198","DOIUrl":"10.3389/ffunb.2023.1320198","url":null,"abstract":"","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1320198"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining the biocontrol capacities of Trichoderma spp. originating from Turkey on Fusarium culmorum by transcriptional and antagonistic analyses","authors":"Özlem Sefer, Esma Özsoy, Emre Yörük, Evrim Özkale","doi":"10.3389/ffunb.2023.1278525","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1278525","url":null,"abstract":"In this study aiming to investigate potential fungal biocontrol agents for Fusarium culmorum , several isolates of Trichoderma spp. were evaluated for their antagonistic effects by means of transcriptional analyses. At first, 21 monosporic Trichoderma spp. isolates were obtained from natural wood debris and wood area soils in Manisa, Turkey. Trichoderma spp. Isolates were identified as belonging to four different species ( T. atroviride, T. harzianum, T. koningii , and T. brevicompactum ) by tef1-α sequencing. Then, the linear growth rate (LGR) of each species was calculated and determined to be in a range between 13.22 ± 0.71 mm/day ( T. atroviride TR2) and 25.06 ± 1.45 mm/day ( T. harzianum K30). Inter-simple sequence repeat (ISSR) genotyping validated the tef1-α sequencing results by presenting two sub-clusters in the dendrogram. We determined the genetically most similar (TR1 &amp; TR2; 97.77%) and dissimilar (K9 &amp; K17; 40.40%) individuals belonging to the same and different species, respectively. Dual sandwich culture tests (which are useful for antagonism studies) revealed that T. harzianum K21 (the least suppressive) and T. brevicompactum K26 (the most suppressive) isolates suppressed F. culmorum with growth rates of 3% and 46%, respectively. Expressions of genes previously associated with mycoparasitism-plant protection-secondary metabolism ( nag1 , tgf-1 , and tmk-1 ) were tested by quantitative real-time polymerase chain reaction (qRT-PCR) in both those isolates. While there were no significant differences (p&gt;0.05) in expression that were present in the K21 isolate, those three genes were upregulated with fold change values of 2.69 ± 0.26 (p&lt;0.001), 2.23 ± 0.16 (p&lt;0.001), and 5.38 ± 2.01 (p&lt;0.05) in K26, meaning that the presence of significant alteration in the physiological processes of the fungus. Also, its mycoparasitism potential was tested on Triticum aestivum L. cv Basribey in planta , which was infected with the F. culmorum FcUK99 strain. Results of the trials, including specific plant growth parameters (weight or length of plantlets), confirmed the mycoparasitic potential of the isolate. It can be concluded that (i) nag1 , tgf-1 , and tmk-1 genes could be approved as reliable markers for evaluation of BCA capacities of Trichoderma spp. and (ii) the T. brevicompactum K26 strain can be suggested as a promising candidate for combating in F. culmorum diseases following the necessary procedures to ensure it is non-hazardous and safe.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"44 24","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136282093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manja Mølgaard Severinsen, Klaus Ringsborg Westphal, Mikael Terp, Trine Sørensen, Anders Olsen, Simone Bachleitner, Lena Studt-Reinhold, Reinhard Wimmer, Teis Esben Sondergaard, Jens Laurids Sørensen
{"title":"Filling out the gaps – identification of fugralins as products of the PKS2 cluster in Fusarium graminearum","authors":"Manja Mølgaard Severinsen, Klaus Ringsborg Westphal, Mikael Terp, Trine Sørensen, Anders Olsen, Simone Bachleitner, Lena Studt-Reinhold, Reinhard Wimmer, Teis Esben Sondergaard, Jens Laurids Sørensen","doi":"10.3389/ffunb.2023.1264366","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1264366","url":null,"abstract":"As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":" March","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine Salazar-Alekseyeva, Gerhard J. Herndl, Federico Baltar
{"title":"Release of cell-free enzymes by marine pelagic fungal strains","authors":"Katherine Salazar-Alekseyeva, Gerhard J. Herndl, Federico Baltar","doi":"10.3389/ffunb.2023.1209265","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1209265","url":null,"abstract":"Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (V max ) and half-saturation constant (K m ) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"18 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of pest ants by pathogenic fungi: state of the art.","authors":"Patricia J Folgarait, Daniela Goffré","doi":"10.3389/ffunb.2023.1199110","DOIUrl":"10.3389/ffunb.2023.1199110","url":null,"abstract":"<p><p>Pest ants are known for their damage to biodiversity, harm to agriculture, and negative impact on human welfare. Ants thrive when environmental opportunities arise, becoming pests and/or invading non-native areas. As social insects, they are extremely difficult to control using sustainable methods like biological control. The latter, although safer to the environment, acts slowly allowing the ants to use their individual and social defenses. Among biocontrol agents, fungal pathogens were proposed as promising, however, it is difficult to ascertain their success when the bibliography has not been reviewed and condensed. Therefore, this paper is the first in performing such task by analyzing publications mainly from 2000 to 2022 about the control of pest ants by fungi. From 85 publications selected, 77% corresponded to laboratory studies. <i>Beauveria</i> and <i>Metarhizium</i> were the genera most used in laboratory and field studies. Most of them included <i>Acromyrmex</i> and <i>Atta</i> leaf-cutter ants (LCA), and <i>Solenopsis</i> fire ants. From laboratory experiments, we evaluated how ant net mortality was affected by ant and fungal species, and also by origin, concentration, and inoculation technique of the fungal strains tested. <i>Beauveria bassiana</i> and <i>Metarhizium anisopliae</i> produced the greatest mortality, along with the inoculation spray technique and fungal strains collected from ants. There was a positive relationship between ant mortality and fungal concentration only for those studies which evaluated more than one concentration. Twenty field experimental studies were found, covering 13 pest species, mainly LCA and <i>Solenopsis invicta</i>. Only <i>B. bassiana</i> was tested on <i>Solenopsis</i>, <i>M. anisopliae</i> was mostly used for <i>Acromyrmex</i>, and <i>M. anisopliae</i> or <i>Trichoderma</i> were mainly used with <i>Atta</i> species. The median control field efficiency varied from 20% to 85% for different fungi and ant genera. When grouping all fungal species together, the median control efficiency seemed to be better for <i>Acromyrmex</i> (67%) than for <i>Atta</i> and <i>Solenopsis</i> (both 43%). Our review shows that, at this stage of knowledge, it is very difficult to extrapolate any result. We offer suggestions to improve and standardize laboratory and field experimental studies in order to advance more efficiently in the fungal control of pest ants.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1199110"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54232721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veronika E Mayer, Hermann Voglmayr, Rumsais Blatrix, Jérôme Orivel, Céline Leroy
{"title":"Fungi as mutualistic partners in ant-plant interactions.","authors":"Veronika E Mayer, Hermann Voglmayr, Rumsais Blatrix, Jérôme Orivel, Céline Leroy","doi":"10.3389/ffunb.2023.1213997","DOIUrl":"10.3389/ffunb.2023.1213997","url":null,"abstract":"<p><p>Associations between fungi and ants living in mutualistic relationship with plants (\"plant-ants\") have been known for a long time. However, only in recent years has the mutualistic nature, frequency, and geographical extent of associations between tropical arboreal ants with fungi of the ascomycete order Chaetothyriales and Capnodiales (belonging to the so-called \"Black Fungi\") become clear. Two groups of arboreal ants displaying different nesting strategies are associated with ascomycete fungi: carton-building ants that construct nest walls and galleries on stems, branches or below leaves which are overgrown by fungal hyphae, and plant-ants that make their nests inside living plants (myrmecophytes) in plant provided cavities (domatia) where ants cultivate fungi in small delimited \"patches\". In this review we summarize the current knowledge about these unsuspected plant-ant-fungus interactions. The data suggest, that at least some of these ant-associated fungi seem to have coevolved with ants over a long period of time and have developed specific adaptations to this lifestyle.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1213997"},"PeriodicalIF":2.1,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janice Bamforth, Tiffany Chin, Tehreem Ashfaq, Niradha Withana Gamage, Kerri Pleskach, Sheryl A Tittlemier, Maria Antonia Henriquez, Shimosh Kurera, Sung-Jong Lee, Bhaktiben Patel, Tom Gräfenhan, Sean Walkowiak
{"title":"Corrigendum: A survey of <i>Fusarium</i> species and ADON genotype on Canadian wheat grain.","authors":"Janice Bamforth, Tiffany Chin, Tehreem Ashfaq, Niradha Withana Gamage, Kerri Pleskach, Sheryl A Tittlemier, Maria Antonia Henriquez, Shimosh Kurera, Sung-Jong Lee, Bhaktiben Patel, Tom Gräfenhan, Sean Walkowiak","doi":"10.3389/ffunb.2023.1271067","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1271067","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/ffunb.2022.1062444.].</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1271067"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}