FEMS microbesPub Date : 2024-09-06eCollection Date: 2024-01-01DOI: 10.1093/femsmc/xtae028
Madeleine A Thompson, David L Valentine, Xuefeng Peng
{"title":"Size fractionation informs microbial community composition and interactions in the eastern tropical North Pacific Ocean.","authors":"Madeleine A Thompson, David L Valentine, Xuefeng Peng","doi":"10.1093/femsmc/xtae028","DOIUrl":"10.1093/femsmc/xtae028","url":null,"abstract":"<p><p>Marine microorganisms are drivers of biogeochemical cycles in the world's oceans, including oxygen minimum zones (OMZs). Using a metabarcoding survey of the 16S rRNA gene, we investigated prokaryotic communities, as well as their potential interactions with fungi, at the coastal, offshore, and peripheral OMZ of the eastern tropical North Pacific. Water samples were collected along a vertical oxygen gradient, and large volumes were filtered through three size fractions, 0.22, 2, and 22 µm. The changes in community composition along the oxygen gradient were driven by Planctomycetota, Bacteroidota, Verrucomicrobiota, and Gammaproteobacteria; most are known degraders of marine polysaccharides and usually associated with the large particle-associated (LPA) community. The relative abundance of Nitrososphaerota, Alphaproteobacteria, Actinomycetota, and Nitrospinota was high in free-living and small particle-associated (SPA) communities. Network analyses identified putative interactions between fungi and prokaryotes in the particle-associated fractions, which have been largely overlooked in the ocean. In the SPAnetwork analysis, fungal amplicon sequence variants (ASVs) had exclusively negative connections with SAR11 nodes. In the LPA network analysis, fungal ASVs displayed both negative and positive connections with Pseudomonadota, SAR324, and Thermoplasmatota. Our findings demonstrate the utility of three-stage size-fractioned filtration in providing novel insights into marine microbial ecology.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae028"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-08-24eCollection Date: 2024-01-01DOI: 10.1093/femsmc/xtae026
Akarawit Jenjitwanich, Hans Marx, Michael Sauer
{"title":"Characterization of the metabolism of the yeast <i>Yarrowia lipolytica</i> growing as a biofilm.","authors":"Akarawit Jenjitwanich, Hans Marx, Michael Sauer","doi":"10.1093/femsmc/xtae026","DOIUrl":"https://doi.org/10.1093/femsmc/xtae026","url":null,"abstract":"<p><p><i>Yarrowia lipolytica</i> is a well-characterized yeast with remarkable metabolic adaptability. It is capable of producing various products from different carbon sources and easily switching between planktonic and biofilm states. A biofilm represents a natural means of cell immobilization that could support continuous cultivation and production processes, such as perfusion cultivation. However, the metabolic activities of <i>Y. lipolytica</i> in biofilms have not yet been studied in detail. Therefore, this study aimed to compare the metabolic activities of <i>Y. lipolytica</i> in biofilm and planktonic states. Conventionally, a stirred tank bioreactor was used to cultivate <i>Y. lipolytica</i> in a planktonic state. On the other hand, a trickle bed bioreactor system was used for biofilm cultivation. The low pH at 3 was maintained to favor polyol production. The accumulation of citric acid was observed over time only in the biofilm state, which significantly differed from the planktonic state. Although the biofilm cultivation process has lower productivity, it has been observed that the production rate remains constant and the total product yield is comparable to the planktonic state when supplied with 42% oxygen-enriched air. This finding indicates that the biofilm state has the potential for continuous bioprocessing applications and is possibly a feasible option.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae026"},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-08-14eCollection Date: 2024-01-01DOI: 10.1093/femsmc/xtae024
Isabel K Erb, Carolina Suarez, Ellinor M Frank, Johan Bengtsson-Palme, Elisabet Lindberg, Catherine J Paul
{"title":"<i>Escherichia coli</i> in urban marine sediments: interpreting virulence, biofilm formation, halotolerance, and antibiotic resistance to infer contamination or naturalization.","authors":"Isabel K Erb, Carolina Suarez, Ellinor M Frank, Johan Bengtsson-Palme, Elisabet Lindberg, Catherine J Paul","doi":"10.1093/femsmc/xtae024","DOIUrl":"10.1093/femsmc/xtae024","url":null,"abstract":"<p><p>Marine sediments have been suggested as a reservoir for pathogenic bacteria, including <i>Escherichia coli</i>. The origins, and properties promoting survival of <i>E. coli</i> in marine sediments (including osmotolerance, biofilm formation capacity, and antibiotic resistance), have not been well-characterized. Phenotypes and genotypes of 37 <i>E. coli</i> isolates from coastal marine sediments were characterized. The isolates were diverse: 30 sequence types were identified that have been previously documented in humans, livestock, and other animals. Virulence genes were found in all isolates, with more virulence genes found in isolates sampled from sediment closer to the effluent discharge point of a wastewater treatment plant. Antibiotic resistance was demonstrated phenotypically for one isolate, which also carried tetracycline resistance genes on a plasmid. Biofilm formation capacity varied for the different isolates, with most biofilm formed by phylogroup B1 isolates. All isolates were halotolerant, growing at 3.5% NaCl. This suggests that the properties of some isolates may facilitate survival in marine environments and can explain in part how marine sediments can be a reservoir for pathogenic <i>E. coli</i>. As disturbance of sediment could resuspend bacteria, this should be considered as a potential contributor to compromised bathing water quality at nearby beaches.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae024"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-07-27eCollection Date: 2024-01-01DOI: 10.1093/femsmc/xtae021
Utkarsh Sood, Gauri Garg, Rup Lal
{"title":"Editorial: thematic issue on modulating the environment with microbes.","authors":"Utkarsh Sood, Gauri Garg, Rup Lal","doi":"10.1093/femsmc/xtae021","DOIUrl":"10.1093/femsmc/xtae021","url":null,"abstract":"<p><p>The significance of heme to Enterococcus faecalis is reviewed while also identifying the prevalence of hemoproteins throughout the enterococci and highlighting gaps in knowledge in enterococcal mechanisms of heme homeostasis.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae021"},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-07-27eCollection Date: 2024-01-01DOI: 10.1093/femsmc/xtae023
Misshelle Bustamante, Floor Koopman, Jesper Martens, Jolanda K Brons, Javier DelaFuente, Thomas Hackl, Oscar P Kuipers, G Sander van Doorn, Marjon G J de Vos
{"title":"Community context influences the conjugation efficiency of <i>Escherichia coli</i>.","authors":"Misshelle Bustamante, Floor Koopman, Jesper Martens, Jolanda K Brons, Javier DelaFuente, Thomas Hackl, Oscar P Kuipers, G Sander van Doorn, Marjon G J de Vos","doi":"10.1093/femsmc/xtae023","DOIUrl":"10.1093/femsmc/xtae023","url":null,"abstract":"<p><p>In urinary tract infections (UTIs), different bacteria can live in a polymicrobial community consisting of different species. It is unknown how community members affect the conjugation efficiency of uropathogenic <i>Escherichia coli</i>. We investigated the influence of individual species often coisolated from urinary infections (UTI) on the conjugation efficiency of <i>E. coli</i> isolates in artificial urine medium. Pairwise conjugation rate experiments were conducted between a donor <i>E. coli</i> strain containing the pOXA-48 plasmid and six uropathogenic <i>E. coli</i> isolates, in the presence and absence of five different species commonly coisolated in polymicrobial UTIs to elucidate their effect on the conjugation efficiency of <i>E. coli</i>. We found that the basal conjugation rates of pOXA-48, in the absence of other species, are dependent on the bacterial host genetic background. Additionally, we found that bacterial interactions have an overall positive effect on the conjugation rate of pOXA-48. Particularly, Gram-positive enterococcal species were found to enhance the conjugation rates towards uropathogenic <i>E. coli</i> isolates. We hypothesize that the nature of the coculture and physical interactions are important for these increased conjugation rates in an artificial urine medium environment.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae023"},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-07-26eCollection Date: 2024-01-01DOI: 10.1093/femsmc/xtae022
Emma K Sheriff, Fernanda Salvato, Shelby E Andersen, Anushila Chatterjee, Manuel Kleiner, Breck A Duerkop
{"title":"Enterococcal quorum-controlled protease alters phage infection.","authors":"Emma K Sheriff, Fernanda Salvato, Shelby E Andersen, Anushila Chatterjee, Manuel Kleiner, Breck A Duerkop","doi":"10.1093/femsmc/xtae022","DOIUrl":"10.1093/femsmc/xtae022","url":null,"abstract":"<p><p>Increased prevalence of multidrug-resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics, we performed proteomics on <i>Enterococcus faecalis</i> infected with the phage VPE25. We discovered that numerous uncharacterized phage proteins are produced during phage infection of <i>E. faecalis</i>. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an <i>fsr</i> quorum-sensing-regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the quorum-sensing regulator <i>fsrA</i> or <i>gelE</i> resulted in plaques with a \"halo\" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the putative murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing <i>E. faecalis</i> virulence.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae022"},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-06-03DOI: 10.1093/femsmc/xtae018
Michelle Hallenbeck, Michelle J. Chua, James Collins
{"title":"The role of the universal sugar transport system components PtsI (EI) and PtsH (HPr) in Enterococcus faecium","authors":"Michelle Hallenbeck, Michelle J. Chua, James Collins","doi":"10.1093/femsmc/xtae018","DOIUrl":"https://doi.org/10.1093/femsmc/xtae018","url":null,"abstract":"\u0000 Vancomycin-resistant enterococci (VRE) pose a serious threat to public health because of their limited treatment options. Therefore, there is an increasing need to identify novel targets to develop new drugs. Here, we examined the roles of the universal PTS components, PtsI and PtsH, in Enterococcus faecium to determine their roles in carbon metabolism, biofilm formation, stress response, and the ability to compete in the gastrointestinal tract. Clean deletion of ptsHI resulted in a significant reduction in the ability to import and metabolize simple sugars, attenuated growth rate, reduced biofilm formation, and decreased competitive fitness both in vitro and in vivo. However, no significant difference in stress survival was observed when compared with the wild type. These results suggest that targeting universal or specific PTS may provide a novel treatment strategy by reducing the fitness of E. faecium.","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"86 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-05-15DOI: 10.1093/femsmc/xtae015
J. S. Grunnvåg, K. Hegstad, Christian S. Lentz
{"title":"Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium","authors":"J. S. Grunnvåg, K. Hegstad, Christian S. Lentz","doi":"10.1093/femsmc/xtae015","DOIUrl":"https://doi.org/10.1093/femsmc/xtae015","url":null,"abstract":"\u0000 Enterococcus faecium is a gut commensal bacterium that is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"60 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-05-07DOI: 10.1093/femsmc/xtae014
P. Stege, J. Beekman, Antoni P. A. Hendrickx, Laura van Eijk, Malbert R. C. Rogers, S. Suen, A. Vonk, Rob J. L. Willems, F. Paganelli
{"title":"Colonization of vancomycin-resistant Enterococcus faecium in human-derived colonic epithelium: Unraveling the transcriptional dynamics of host-enterococcal interactions","authors":"P. Stege, J. Beekman, Antoni P. A. Hendrickx, Laura van Eijk, Malbert R. C. Rogers, S. Suen, A. Vonk, Rob J. L. Willems, F. Paganelli","doi":"10.1093/femsmc/xtae014","DOIUrl":"https://doi.org/10.1093/femsmc/xtae014","url":null,"abstract":"\u0000 Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake and biofilm formation (chromossome). In total, 260 were downregulated including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEMS microbesPub Date : 2024-05-06DOI: 10.1093/femsmc/xtae013
Rebecca A. Keogh, Savannah Huyvaert, Garrett D Moore, Alexander R. Horswill, K. Doran
{"title":"Virulence Characteristics of Gram-positive Bacteria Isolated from Diabetic Foot Ulcers","authors":"Rebecca A. Keogh, Savannah Huyvaert, Garrett D Moore, Alexander R. Horswill, K. Doran","doi":"10.1093/femsmc/xtae013","DOIUrl":"https://doi.org/10.1093/femsmc/xtae013","url":null,"abstract":"\u0000 Diabetic wound infections including diabetic foot ulcers (DFUs) are a major global health concern and a leading cause of non-traumatic amputations. Numerous bacterial species establish infection in DFUs, and treatment with antibiotics often fails due to widespread antibiotic resistance and biofilm formation. Determination of bacterial species that reside in DFU and their virulence potential is critical to inform treatment options. Here, we isolate bacteria from debridement tissues from patients with diabetes at the University of Colorado Anschutz Medical Center. The most frequent species were Gram-positive including Enterococcus faecalis, Staphylococcus aureus, and Streptococcus agalactiae, also known as Group B Streptococcus (GBS). Most tissues had more than one species isolated with E. faecalis and GBS frequently occurring in polymicrobial infection with S. aureus. S. aureus was the best biofilm producing species with E. faecalis and GBS isolates exhibiting little to no biofilm formation. Antibiotic susceptibility varied amongst strains with high levels of penicillin resistance amongst S. aureus, clindamycin resistance amongst GBS and intermediate vancomycin resistance amongst E. faecalis. Finally, we utilized a murine model of diabetic wound infection and found that the presence of S. aureus led to significantly higher recovery of GBS and E. faecalis compared to mice challenged in mono-infection.","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141007424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}