Priscillar Mumo Mutungi, Vitalis Wafula Wekesa, Justus Onguso, Erustus Kanga, Steve B S Baleba, Hamadi Iddi Boga
{"title":"Fungal endophytes from saline-adapted shrubs induce salinity stress tolerance in tomato seedlings.","authors":"Priscillar Mumo Mutungi, Vitalis Wafula Wekesa, Justus Onguso, Erustus Kanga, Steve B S Baleba, Hamadi Iddi Boga","doi":"10.1093/femsmc/xtae012","DOIUrl":null,"url":null,"abstract":"<p><p>To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from <i>Ascomycetes</i> and <i>Basidiomycetes</i> phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (<i>Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme</i> and <i>Aspergilus puniceus</i>) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"5 ","pages":"xtae012"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtae012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.