Michelle Hallenbeck, Michelle J. Chua, James Collins
{"title":"通用糖转运系统成分 PtsI (EI) 和 PtsH (HPr) 在粪肠球菌中的作用","authors":"Michelle Hallenbeck, Michelle J. Chua, James Collins","doi":"10.1093/femsmc/xtae018","DOIUrl":null,"url":null,"abstract":"\n Vancomycin-resistant enterococci (VRE) pose a serious threat to public health because of their limited treatment options. Therefore, there is an increasing need to identify novel targets to develop new drugs. Here, we examined the roles of the universal PTS components, PtsI and PtsH, in Enterococcus faecium to determine their roles in carbon metabolism, biofilm formation, stress response, and the ability to compete in the gastrointestinal tract. Clean deletion of ptsHI resulted in a significant reduction in the ability to import and metabolize simple sugars, attenuated growth rate, reduced biofilm formation, and decreased competitive fitness both in vitro and in vivo. However, no significant difference in stress survival was observed when compared with the wild type. These results suggest that targeting universal or specific PTS may provide a novel treatment strategy by reducing the fitness of E. faecium.","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"86 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of the universal sugar transport system components PtsI (EI) and PtsH (HPr) in Enterococcus faecium\",\"authors\":\"Michelle Hallenbeck, Michelle J. Chua, James Collins\",\"doi\":\"10.1093/femsmc/xtae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Vancomycin-resistant enterococci (VRE) pose a serious threat to public health because of their limited treatment options. Therefore, there is an increasing need to identify novel targets to develop new drugs. Here, we examined the roles of the universal PTS components, PtsI and PtsH, in Enterococcus faecium to determine their roles in carbon metabolism, biofilm formation, stress response, and the ability to compete in the gastrointestinal tract. Clean deletion of ptsHI resulted in a significant reduction in the ability to import and metabolize simple sugars, attenuated growth rate, reduced biofilm formation, and decreased competitive fitness both in vitro and in vivo. However, no significant difference in stress survival was observed when compared with the wild type. These results suggest that targeting universal or specific PTS may provide a novel treatment strategy by reducing the fitness of E. faecium.\",\"PeriodicalId\":73024,\"journal\":{\"name\":\"FEMS microbes\",\"volume\":\"86 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsmc/xtae018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtae018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of the universal sugar transport system components PtsI (EI) and PtsH (HPr) in Enterococcus faecium
Vancomycin-resistant enterococci (VRE) pose a serious threat to public health because of their limited treatment options. Therefore, there is an increasing need to identify novel targets to develop new drugs. Here, we examined the roles of the universal PTS components, PtsI and PtsH, in Enterococcus faecium to determine their roles in carbon metabolism, biofilm formation, stress response, and the ability to compete in the gastrointestinal tract. Clean deletion of ptsHI resulted in a significant reduction in the ability to import and metabolize simple sugars, attenuated growth rate, reduced biofilm formation, and decreased competitive fitness both in vitro and in vivo. However, no significant difference in stress survival was observed when compared with the wild type. These results suggest that targeting universal or specific PTS may provide a novel treatment strategy by reducing the fitness of E. faecium.