{"title":"A Halfedge Refinement Rule for Parallel Loop Subdivision","authors":"K. Vanhoey, J. Dupuy","doi":"10.2312/egs.20221028","DOIUrl":"https://doi.org/10.2312/egs.20221028","url":null,"abstract":"We observe that a Loop refinement step invariably splits halfedges into four new ones. We leverage this observation to formulate a breadth-first uniform Loop subdivision algorithm: Our algorithm iterates over halfedges to both generate the refined topological information and scatter contributions to the refined vertex points. Thanks to this formulation we limit concurrent data access, enabling straightforward and efficient parallelization on the GPU. We provide an open-source GPU implementation that runs at state-of-the-art performances and supports production-ready assets, including borders and semi-sharp creases.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"33 1-2 1","pages":"41-44"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78213536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved Triangle Encoding Scheme for Cached Tessellation","authors":"B. Kerbl, Linus Horváth, Daniel Cornel, M. Wimmer","doi":"10.2312/egs.20221031","DOIUrl":"https://doi.org/10.2312/egs.20221031","url":null,"abstract":"With the recent advances in real-time rendering that were achieved by embracing software rasterization, the interest in alternative solutions for other fixed-function pipeline stages rises. In this paper, we revisit a recently presented software approach for cached tessellation, which compactly encodes and stores triangles in GPU memory. While the proposed technique is both efficient and versatile, we show that the original encoding is suboptimal and provide an alternative scheme that acts as a drop-in replacement. As shown in our evaluation, the proposed modifications can yield performance gains of 40% and more.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"207 1","pages":"53-56"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76667720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Procedural Bridges-and-pillars Support Generation","authors":"M. Freire, S. Hornus, S. Perchy, S. Lefebvre","doi":"10.2312/egs.20221025","DOIUrl":"https://doi.org/10.2312/egs.20221025","url":null,"abstract":"Additive manufacturing requires support structures to fabricate parts with overhangs. In this paper, we revisit a known support structure based on bridges-and-pillars (see Figure 1). The support structures are made of vertical pillars supporting horizontal bridges. Their scaffolding structure makes them stable and reliable to print. However, the algorithm heuristic search does not scale well and is prone to produce contacts with the parts, leaving scars after removal. We propose a novel algorithm for this type of supports, focusing on avoiding unnecessary contacts with the part as much as possible. Our approach builds upon example-based model synthesis to enable early detection of collision-free passages as well as non-reachable regions.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"1 1","pages":"29-32"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78449103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-time Sponge and Fluid Simulation","authors":"V. Burkus, A. Karpati, G. Klár, L. Szécsi","doi":"10.2312/egs.20221038","DOIUrl":"https://doi.org/10.2312/egs.20221038","url":null,"abstract":"In this paper we present an approach to couple PBD simulation of deformable porous objects with SPH. We propose solutions for simulating the absorption and discharge of fluid by the sponge, and the effect of the fluid on sponge behaviour. We maintain the ability of the original approaches to handle interactions with rigid bodies. Our solution, like PBD in general, is less geared towards physical accuracy, but aims for real-time, visually plausible simulation of these systems, appropriate for interactive VR applications and games.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"113 1","pages":"81-84"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80533881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stochastic Light Culling for Single Scattering in Participating Media","authors":"S. Fujieda, Yusuke Tokuyoshi, T. Harada","doi":"10.2312/egs.20221023","DOIUrl":"https://doi.org/10.2312/egs.20221023","url":null,"abstract":"We introduce a simple but efficient method to compute single scattering from point and arbitrarily shaped area light sources in participating media. Our method extends the stochastic light culling method to volume rendering by considering the intersection of a ray and spherical bounds of light influence ranges. For primary rays, this allows simple computation of the lighting in participating media without hierarchical data structures such as a light tree. First, we show how to combine equiangular sampling with the proposed light culling method in a simple case of point lights. We then apply it to arbitrarily shaped area lights by considering virtual point lights on the surface of area lights. Using our method, we are able to improve the rendering quality for scenes with many lights without tree construction and traversal.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"20 6","pages":"21-24"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72429779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transparent Rendering and Slicing of Integral Surfaces Using Per-primitive Interval Arithmetic","authors":"M. Aydinlilar, C. Zanni","doi":"10.2312/egs.20221027","DOIUrl":"https://doi.org/10.2312/egs.20221027","url":null,"abstract":"We present a method for efficient incorporation of integral surfaces within existing robust processing methods such as interval arithmetic and segment-tracing. We based our approach on high-level knowledge of the field function of the primitives. We show application to slicing and transparent rendering of integral surfaces based on interval arithmetic.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"73 1","pages":"37-40"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77012998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graph-based Computation of Voronoi Diagrams on Large-scale Point-based Surfaces","authors":"Arnaud Bletterer, F. Payan, M. Antonini","doi":"10.2312/egs.20221030","DOIUrl":"https://doi.org/10.2312/egs.20221030","url":null,"abstract":"We present an original algorithm to construct Voronoi tessellations on surfaces from a set of depth maps. Based on a local graph-based structure, where each local graph spans one depth map, our algorithm is able to compute partial Voronoi diagrams (one per scan)","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"91 1","pages":"49-52"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89850931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Path-Guiding Based on Parametric Mixture Models","authors":"Mikhail Derevyannykh","doi":"10.2312/egs.20221024","DOIUrl":"https://doi.org/10.2312/egs.20221024","url":null,"abstract":"Path-Guiding algorithms for sampling scattering directions can drastically decrease the variance of Monte Carlo estimators of Light Transport Equation, but their usage was limited to offline rendering because of memory and computational limitations. We introduce a new robust screen-space technique that is based on online learning of parametric mixture models for guiding the real-time path-tracing algorithm. It requires storing of 8 parameters for every pixel, achieves a reduction of FLIP metric up to 4 times with 1 spp rendering. Also, it consumes less than 1.5ms on RTX 2070 for 1080p and reduces path-tracing timings by generating more coherent rays by about 5% on average. Moreover, it leads to significant bias reduction and a lower level of flickering of SVGF output.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"27 1","pages":"25-28"},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81629022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactive simulation for easy decision-making in fluid dynamics","authors":"Mengchen Wang, N. Férey, F. Magoulès, P. Bourdot","doi":"10.2312/egs.20211022","DOIUrl":"https://doi.org/10.2312/egs.20211022","url":null,"abstract":"A conventional study of fluid simulation involves different stages including conception, simulation, visualization, and analysis tasks. It is, therefore, necessary to switch between different software and interactive contexts which implies costly data manipulation and increases the time needed for decision making. Our interactive simulation approach was designed to shorten this loop, allowing users to visualize and steer a simulation in progress without waiting for the end of the simulation. The methodology allows the users to control, start, pause, or stop a simulation in progress, to change global physical parameters, to interact with its 3D environment by editing boundary conditions such as walls or obstacles. This approach is made possible by using a methodology such as the Lattice Boltzmann Method (LBM) to achieve interactive time while remaining physically relevant. In this work, we present our platform dedicated to interactive fluid simulation based on LBM. The contribution of our interactive simulation approach to decision making will be evaluated in a study based on a simple but realistic use case.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"36 1","pages":"53-56"},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89588498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Henrique Suruagy Perrusi, Paul Baksic, H. Courtecuisse
{"title":"Interactive Finite Element Model of Needle Insertion and Laceration","authors":"Pedro Henrique Suruagy Perrusi, Paul Baksic, H. Courtecuisse","doi":"10.2312/EGS.20211020","DOIUrl":"https://doi.org/10.2312/EGS.20211020","url":null,"abstract":"This paper introduces an interactive model of needle insertion, including the possibility to simulate lacerations of tissue around the needle. The method relies on complementary constraints to couple the Finite Element models of the needle and tissue. The cutting path is generated from mechanical criteria (i.e. cutting force) at arbitrary resolution, avoiding expensive remeshing of Finite Element meshes. Complex behavior can be simulated in real time such as friction along the shaft of the needle, puncture and cutting force resulting from interactions of the needle with the tissue. The method is illustrated both in an interactive simulation of a needle insertion/cutting and in a robotic needle insertion in liver tissue during the breathing motion.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"77 1","pages":"45-48"},"PeriodicalIF":0.0,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83865469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}