Real-Time Path-Guiding Based on Parametric Mixture Models

Mikhail Derevyannykh
{"title":"Real-Time Path-Guiding Based on Parametric Mixture Models","authors":"Mikhail Derevyannykh","doi":"10.2312/egs.20221024","DOIUrl":null,"url":null,"abstract":"Path-Guiding algorithms for sampling scattering directions can drastically decrease the variance of Monte Carlo estimators of Light Transport Equation, but their usage was limited to offline rendering because of memory and computational limitations. We introduce a new robust screen-space technique that is based on online learning of parametric mixture models for guiding the real-time path-tracing algorithm. It requires storing of 8 parameters for every pixel, achieves a reduction of FLIP metric up to 4 times with 1 spp rendering. Also, it consumes less than 1.5ms on RTX 2070 for 1080p and reduces path-tracing timings by generating more coherent rays by about 5% on average. Moreover, it leads to significant bias reduction and a lower level of flickering of SVGF output.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"27 1","pages":"25-28"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/egs.20221024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Path-Guiding algorithms for sampling scattering directions can drastically decrease the variance of Monte Carlo estimators of Light Transport Equation, but their usage was limited to offline rendering because of memory and computational limitations. We introduce a new robust screen-space technique that is based on online learning of parametric mixture models for guiding the real-time path-tracing algorithm. It requires storing of 8 parameters for every pixel, achieves a reduction of FLIP metric up to 4 times with 1 spp rendering. Also, it consumes less than 1.5ms on RTX 2070 for 1080p and reduces path-tracing timings by generating more coherent rays by about 5% on average. Moreover, it leads to significant bias reduction and a lower level of flickering of SVGF output.
基于参数混合模型的实时路径引导
采样散射方向的路径引导算法可以极大地降低光输运方程蒙特卡罗估计的方差,但由于内存和计算能力的限制,它们的使用仅限于离线渲染。我们介绍了一种新的基于参数混合模型在线学习的鲁棒屏幕空间技术,用于指导实时路径跟踪算法。它需要为每个像素存储8个参数,以1 spp渲染实现最多4倍的FLIP度量减少。此外,对于1080p,它在RTX 2070上消耗的时间少于1.5ms,并且通过产生更多相干光线平均减少约5%的路径跟踪时间。此外,它还可以显著降低SVGF输出的偏置和较低的闪烁水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信