Gobinda Chandra Mohanty, Chinmayee Chowde Gowda, Pooja Gakhad, M. Sanjay, Abhishek Singh, Koushik Biswas and Chandra Sekhar Tiwary
{"title":"Effect of Zn/Mn on the supercapacitor behavior of high-entropy FeCoNiCrZn/Mn alloy†","authors":"Gobinda Chandra Mohanty, Chinmayee Chowde Gowda, Pooja Gakhad, M. Sanjay, Abhishek Singh, Koushik Biswas and Chandra Sekhar Tiwary","doi":"10.1039/D4YA00376D","DOIUrl":"https://doi.org/10.1039/D4YA00376D","url":null,"abstract":"<p >High-entropy alloys (HEAs) are emerging as potential electrode materials for energy storage owing to their unique multivalent transition states. Herein, we demonstrate the supercapacitor behavior of an HEA consisting of structural elements (earth abundant metals) iron, cobalt, nickel, chromium, and zinc (FeCoNiCrZn). The role of zinc as a replacement for manganese in FeCoNiCrZn/Mn was studied. The highest specific capacitance obtained was ∼556 F g<small><sup>−1</sup></small> at 5 mV s<small><sup>−1</sup></small> in an aqueous electrolyte. Further, an asymmetric liquid-state device was fabricated, which demonstrated the highest capacitance of 98 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> with a specific energy density of 34.8 W h kg<small><sup>−1</sup></small> at a specific power density of 800 W kg<small><sup>−1</sup></small>. Detailed microscopy and spectroscopy analyses provided insights into the electrochemical behavior of individual elements in the HEA. Experimental observations were further supported by density functional theory (DFT) calculations, which showed d-band shifts in each individual element and the synergistic nature of the FeCoNiCrZn HEA compared to its individual nanoclusters.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2972-2985"},"PeriodicalIF":3.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00376d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi and Shin-ichi Orimo
{"title":"Investigating the ion conductivity and synthesis conditions of calcium monocarborane solid-state electrolytes†","authors":"Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi and Shin-ichi Orimo","doi":"10.1039/D4YA00441H","DOIUrl":"https://doi.org/10.1039/D4YA00441H","url":null,"abstract":"<p >Multivalent-ion and all-solid-state batteries have emerged as potential solutions to address resource concerns and safety issues. Calcium is a promising element for multivalent-ion batteries owing to its abundance in the Earth's crust and low reduction potential. In addition, complex hydrides exhibit both high ion conductivity and reduction stability, making them suitable materials for solid-state ion conductors. In this study, we investigated the thermal stability and optimised the synthesis conditions of calcium monocarborane, namely, Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small>, which is a <em>closo</em>-type calcium complex hydride. In addition, we conducted electrochemical analysis to assess its performance as a solid-state divalent-ion conductor. The results indicate that a heat-treatment temperature of 433 K provides Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small> with higher ion conductivity (<em>σ</em> = 1.42 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small>) than the other heating temperatures. Thus, 433 K is considered optimal because [CB<small><sub>11</sub></small>H<small><sub>12</sub></small>]<small><sup>−</sup></small> anions decompose when heat-treated at and above 453 K. Furthermore, the insertion and deinsertion of Ca<small><sup>2+</sup></small> ions are stable and reversible in symmetric cells employing Ca–Sn alloy electrodes, representing the first time this has been observed for an inorganic solid-state calcium-ion conductor. Such insertion and deinsertion highlight the potential of Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small> as a solid-state electrolyte for battery applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2758-2763"},"PeriodicalIF":3.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00441h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction†","authors":"Sneha S. Lavate and Rohit Srivastava","doi":"10.1039/D4YA00417E","DOIUrl":"10.1039/D4YA00417E","url":null,"abstract":"<p >The electrochemical conversion of CO<small><sub>2</sub></small> into C<small><sub>1</sub></small> and C<small><sub>2</sub></small> hydrocarbons, such as methane and ethylene, is a promising pathway toward achieving net zero carbon emissions; however, owing to the high activation barrier of CO<small><sub>2</sub></small>, this reaction remains a big challenge. In this work, an effective strategy has been developed through the synthesis of a low-cost vanadium- and copper-based layered double hydroxide (LDH) decorated with TiO<small><sub>2</sub></small> nanoparticles (VCu LDH/TiO<small><sub>2</sub></small>) as a highly efficient electrocatalyst for the electrochemical reduction of CO<small><sub>2</sub></small> to ethylene. Structural and morphological studies of the developed electrocatalyst were carried out using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (FESEM), X-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM), which confirmed the successful formation of VCu LDH/TiO<small><sub>2</sub></small>. The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) was performed in 0.1 M KHCO<small><sub>3</sub></small> using an H-type cell and afforded CO, H<small><sub>2</sub></small>, CH<small><sub>4</sub></small>, and C<small><sub>2</sub></small>H<small><sub>4</sub></small> as value-added end products. The highest faradaic efficiency of 84% was obtained for C<small><sub>2</sub></small>H<small><sub>4</sub></small> at −0.4 V <em>vs.</em> RHE. The above results suggest that the VCu LDH/TiO<small><sub>2</sub></small> NP electrocatalyst may be an excellent candidate for CO<small><sub>2</sub></small> reduction and can also be utilized in a wide range of energy conversion and storage applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2801-2811"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00417e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kunpeng Liu, Xu Wang, Nan Wang, Ruiyong Zhang, Meinan Yang, Baorong Hou and Wolfgang Sand
{"title":"Effective electrochemical water oxidation to H2O2 based on a bimetallic Fe/Co metal–organic framework","authors":"Kunpeng Liu, Xu Wang, Nan Wang, Ruiyong Zhang, Meinan Yang, Baorong Hou and Wolfgang Sand","doi":"10.1039/D4YA00477A","DOIUrl":"10.1039/D4YA00477A","url":null,"abstract":"<p >Rationally designing high-efficiency catalysts for electrochemical two-electron water oxidation reaction (2e<small><sup>−</sup></small> WOR) to produce hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is extremely important, while designing bimetallic metal–organic frameworks (MOFs) is of great significance for effective 2e<small><sup>−</sup></small> WOR. Herein, MIL-53(Fe) and different proportions of Co-doped MIL-53(Fe) were prepared by a hydrothermal method. The structural characterization and elemental analysis showed that the Co ions were successfully doped into MIL-53(Fe) to form a MIL-53(Fe/Co) bimetallic MOF, and the morphology of MIL-53(Fe/Co) became more regular after Co doping. We found that the optimized MIL-53(Fe/Co) exhibits remarkable 2e<small><sup>−</sup></small> WOR performance, which gave an overpotential of 150 mV at 1 mA cm<small><sup>−2</sup></small>. The overpotential of MIL-53(Fe/Co) was approximately 220 mV (at 1 mA cm<small><sup>−2</sup></small>) lower than that of MIL-53(Fe), which may be attributed to the change of microstructure of MIL-53(Fe) after Co doping and the synergistic effect between Fe/Co. Our work introduces a strategy for designing bimetallic MOF-based electrocatalysts, opening up new possibilities for efficient 2e<small><sup>−</sup></small> WOR systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2842-2850"},"PeriodicalIF":3.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00477a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Open circuit voltage of an all-vanadium redox flow battery as a function of the state of charge obtained from UV-Vis spectroscopy†","authors":"Jana Heiß and Maximilian Kohns","doi":"10.1039/D4YA00360H","DOIUrl":"10.1039/D4YA00360H","url":null,"abstract":"<p >A unique feature of redox flow batteries (RFBs) is that their open circuit voltage (OCV) depends strongly on the state of charge (SOC). In the present work, this relation is investigated experimentally for the all-vanadium RFB (AVRFB), which uses vanadium ions of different oxidation states as redox pairs in both half-cells. In contrast to several literature studies, which use OCV measurements to deduce the SOC <em>via</em> the Nernst equation, we propose a method based on UV-Vis spectroscopy for SOC estimation, thereby enabling completely independent SOC and OCV measurements. Moreover, rather than relying on data at a single wavelength this UV-Vis method uses the entire absorption spectrum to obtain more robust values for the SOC. The obtained SOC-OCV data agree reasonably well with literature values and reveal a significant influence of the thermodynamic non-ideality of the solutions on the OCV as described by the Nernst equation.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 2597-2603"},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00360h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of N-doped zeolite-templated carbons via depolymerized oligomer filling: applications in EDLC electrodes†","authors":"Hiroyuki Itoi, Chika Matsuoka, Ginga Saeki, Hiroyuki Iwata, Shinichiroh Iwamura, Keigo Wakabayashi, Takeharu Yoshii, Hirotomo Nishihara and Yoshimi Ohzawa","doi":"10.1039/D4YA00400K","DOIUrl":"10.1039/D4YA00400K","url":null,"abstract":"<p >Zeolite-templated carbons (ZTCs) are widely studied from basic research to applied research owing to their characteristic pore structures. To synthesize ZTCs, molecules with a size smaller than the pore sizes of template zeolites have been used as carbon sources for their carbonization in the zeolite pores. Therefore, the type of carbon sources has been limited to molecules with a size smaller than the pore sizes of zeolites. In this study, highly structurally regular N-doped zeolite-templated carbons are synthesized using propylene as a carbon source and chitin as both carbon and nitrogen sources <em>via</em> a depolymerized oligomer filling (DOF) mechanism. Chitin, the second most abundant biopolymer on the Earth, consists of <em>N</em>-acetylglucosamine (GlcNAc) as its unit structure and has a much larger size than the zeolite pores. NaY zeolite is used as a template without drying and mixed with chitin. The mixture is subjected to chemical vapor deposition (CVD) using propylene and subsequent heat treatment for graphitization, followed by HF etching for zeolite removal. Upon heating the mixture of the zeolite and chitin, chitin is catalytically depolymerized into chitin oligosaccharide radicals by the zeolite, and the radicals are absorbed into the zeolite pores below 450 °C, which is supported by electron spin resonance and N<small><sub>2</sub></small> adsorption/desorption analyses. The ZTC structure is completed by propylene CVD for adequately filling carbon into the zeolite pores. A validation experiment is conducted using GlcNAc instead of chitin to confirm that the N-doped ZTC is synthesized <em>via</em> the DOF mechanism. The resulting N-doped ZTCs have high structural regularity and high surface areas ranging from 3420 to 3740 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>, and show a higher area-normalized capacitance than undoped ZTC as electric double-layer capacitor electrodes. Utilizing chitin from crustacean shells as one of the raw materials highlights an innovative approach to waste reduction and advances sustainable materials science, contributing to the circular economy and sustainable development goals.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2764-2777"},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00400k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Revathy B. Nair, A. Anantha Krishnan, Aneesh Kumar M. A., Sivaraj Rajendran, Sreehari Harikumar, Vidhya C., M. Ameen Sha, Thomas Mathew, Sajith Kurian and P. S. Arun
{"title":"Ag–NiP deposited green carbon channel embedded NiP panels for sustainable water splitting†","authors":"Revathy B. Nair, A. Anantha Krishnan, Aneesh Kumar M. A., Sivaraj Rajendran, Sreehari Harikumar, Vidhya C., M. Ameen Sha, Thomas Mathew, Sajith Kurian and P. S. Arun","doi":"10.1039/D4YA00463A","DOIUrl":"10.1039/D4YA00463A","url":null,"abstract":"<p >Ag–NiP-deposited carbon channels on NiP panels were successfully developed through lemon juice extract (Ag–CL/NiP) and citric acid (Ag–CC/NiP)-assisted methodologies. The methods involved the precise execution of electroless deposition of the advanced Ag–carbon matrix with NiP. The lemon juice-assisted method produced carbon channels with a dense concentration of Ag–NiP on the electrode surface, whereas the citric acid method resulted in a less dense deposition of Ag–NiP on the electrode surface, as observed <em>via</em> FE-SEM. The Ag–CL/NiP has remarkably higher electro- and photocatalytic water splitting performance due to the compact and conductive Ag–NiP connected with carbon channels. Electrochemical impedance analysis of Ag–CL/NiP revealed a low <em>R</em><small><sub>ct</sub></small> of 491.3 Ω at the open circuit potential, indicating enhanced conductivity. The electrocatalytic oxygen evolution reaction (OER) overpotential of Ag–CL/NiP was 401 mV to achieve a current density of 50 mA cm<small><sup>−2</sup></small>, with a Tafel slope of 46.5 mV dec<small><sup>−1</sup></small>. The panel exhibited good stability, with a proven durability of over 1000 cycles of CV during OER. The developed panel achieved an impressive photocurrent density of ∼9.5 mA cm<small><sup>−2</sup></small> at 1.37 V <em>vs.</em> RHE when subjected to light irradiation with a wavelength exceeding 420 nm. Furthermore, the Ag–CL/NiP panel demonstrated the ability to generate 17.5 mmol cm<small><sup>−2</sup></small> of H<small><sub>2</sub></small> over a 4-hour sunlight irradiation period. The temperature-controlled photocatalytic water splitting experiment revealed that the panel maintained its activity at temperatures as low as ∼12 °C, but with a 40% drop in efficiency compared to normal sunlight conditions.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2790-2800"},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00463a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher G. Cannon, Peter A. A. Klusener, Nigel P. Brandon and Anthony R. J. Kucernak
{"title":"Electrochemical and spectroscopic characterisation of organic molecules with high positive redox potentials for energy storage in aqueous flow cells†","authors":"Christopher G. Cannon, Peter A. A. Klusener, Nigel P. Brandon and Anthony R. J. Kucernak","doi":"10.1039/D4YA00366G","DOIUrl":"10.1039/D4YA00366G","url":null,"abstract":"<p >We show that a number of ubiquitous organic molecules used as redox mediators and chemically sensing species can be used as positive couples in electrochemical energy storage. Air and acid stable organic molecules were tested in aqueous acid electrolytes and employed as the positive electrolyte in H<small><sub>2</sub></small>–organic electrochemical cells. The dissolved organic species were characterised <em>in-operando</em> using UV-vis spectroscopy. <em>N,N,N</em>′<em>,N</em>′-tetramethylbenzidine was found to be a stable and reversible redox organic molecule, with a 2 e<small><sup>−</sup></small> molecule<small><sup>−1</sup></small> capacity and a 0.83 V cell potential. <em>N</em>-Oxyl species were also tested in purely aqueous acidic flow battery electrolytes. A H<small><sub>2</sub></small>–violuric acid cell produced a reversible potential of 1.16 V and demonstrated promising redox flow cell cycling performance.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 2587-2596"},"PeriodicalIF":3.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00366g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surya Prakash, Alagar Ramar, Fu-Ming Wang, Kefyalew Wagari Guji, Citra Deliana Dewi Sundari and Laurien Merinda
{"title":"Tautomerism and nucleophilic addition influence the performance of aqueous organic redox flow batteries of chelidamic acid and chelidonic acid†","authors":"Surya Prakash, Alagar Ramar, Fu-Ming Wang, Kefyalew Wagari Guji, Citra Deliana Dewi Sundari and Laurien Merinda","doi":"10.1039/D4YA00331D","DOIUrl":"10.1039/D4YA00331D","url":null,"abstract":"<p >The redox flow battery is a cost-effective solution for grid-scale energy storage. Its special feature of separate reservoirs and electrodes makes it easy to adjust the electrolyte volume and electrode size, improving safety and scalability. In this work, we explore two organic anolytes, chelidamic acid (CDA) and chelidonic acid (CDO), which share similar molecular weight but differ in their heteroatoms: pyridone and pyrone. The half-cell potentials of the CDA and CDO anolytes enable them to exhibit theoretical cell voltages of 0.49 V and 0.48 V, respectively, when coupled with K<small><sub>4</sub></small>[Fe<small><sup>II</sup></small>(CN)<small><sub>6</sub></small>] catholyte. CDA demonstrated a stable discharge capacity of 650 mA h L<small><sup>−1</sup></small> over 17 days in a basic medium without any degradation. In contrast, CDO gradually loses its capacity over successive cycles. The mechanism for the decomposition of CDO was analysed through cyclic voltammetry, <small><sup>1</sup></small>H-NMR, and FTIR spectroscopy techniques. The analytical results revealed that there was a significant impact of tautomerization in CDA and nucleophilic addition in CDO on the performance in ARFBs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2778-2789"},"PeriodicalIF":3.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00331d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanan Pan, Qi Yang, Xiaoying Liu, Fan Qiu, Junjie Chen, Mengdie Yang, Yang Fan, Haiou Song and Shupeng Zhang
{"title":"Multi-metal (Fe, Cu, and Zn) coordinated hollow porous dodecahedron nanocage catalyst for oxygen reduction in Zn–air batteries†","authors":"Yanan Pan, Qi Yang, Xiaoying Liu, Fan Qiu, Junjie Chen, Mengdie Yang, Yang Fan, Haiou Song and Shupeng Zhang","doi":"10.1039/D4YA00295D","DOIUrl":"10.1039/D4YA00295D","url":null,"abstract":"<p >The coupling of multiple low-cost metals and porous nanocarbon materials aimed at replacing precious metals to enhance electrocatalytic oxygen reduction is a critical challenge in some crucial research areas. In the present study, a hollow dodecahedron nanocage catalyst (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/CuNCs/ZnN<small><sub><em>x</em></sub></small>-PHNC) was constructed by supporting copper nanoclusters, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles, and Zn–N<small><sub><em>x</em></sub></small> after sintering and annealing through the coordination of ZIF-8 and by doping copper and iron ions. We observed that the synergy of the multi-metals in the magnetically separable heterojunction catalyst induced electron transfer and inhibited hydrogen peroxide formation, thus improving its catalytic performance for the oxygen-reduction reaction. The catalyst demonstrated a half-wave potential as high as 0.832 V and a Tafel slope of 54 mV decade<small><sup>−1</sup></small>, superior to many non-precious metal catalysts reported in the literature. The assembled Zn–air battery (ZAB) exhibited a maximum power density of 162 mW cm<small><sup>−2</sup></small> and ultrahigh stability of >500 h at 5 mA cm<small><sup>−2</sup></small> current density. The ZAB's excellent performance indicates its high development and practical application prospects.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 2648-2657"},"PeriodicalIF":3.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00295d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}