Energy advances最新文献

筛选
英文 中文
Evaluation of binderless LTA and SAPO-34 beads as CO2 adsorbents for biogas upgrading in a vacuum pressure swing adsorption setup† 在真空变压吸附装置中将无粘合剂 LTA 和 SAPO-34 珠子作为二氧化碳吸附剂用于沼气升级的评估
IF 3.2
Energy advances Pub Date : 2024-05-31 DOI: 10.1039/D4YA00007B
Dina G. Boer, Henk H. van de Bovenkamp, Jort Langerak, Benny Bakker and Paolo P. Pescarmona
{"title":"Evaluation of binderless LTA and SAPO-34 beads as CO2 adsorbents for biogas upgrading in a vacuum pressure swing adsorption setup†","authors":"Dina G. Boer, Henk H. van de Bovenkamp, Jort Langerak, Benny Bakker and Paolo P. Pescarmona","doi":"10.1039/D4YA00007B","DOIUrl":"10.1039/D4YA00007B","url":null,"abstract":"<p >Biogas upgrading by selective adsorption of CO<small><sub>2</sub></small> using vacuum pressure swing adsorption (VPSA) is a technology that can enable the utilization of the isolated biomethane as a direct replacement for natural gas. In this work, we report for the first time the investigation of LTA and SAPO-34 macroscopic beads with hierarchical porosity as CO<small><sub>2</sub></small> adsorbents in a VPSA setup. While a binder is generally required to shape zeolites and zeotypes into the macroscopic format (<em>e.g.</em> beads, pellets) needed for application in a VPSA column, in this work binderless LTA and SAPO-34 beads were studied and compared with commercial binder-containing zeolite 4A beads. Binary breakthrough experiments were conducted with a gas mixture mimicking biogas (<em>i.e.</em> 40 vol% CO<small><sub>2</sub></small> and 60 vol% CH<small><sub>4</sub></small>) in a single adsorption column up to 4 bar. The SAPO-34 beads displayed a slightly steeper breakthrough with less significant tailing compared to the LTA beads, which was ascribed to faster intra-crystalline diffusion due to the different framework structure and the lower adsorption strength of CO<small><sub>2</sub></small> on SAPO-34 compared to LTA. Notably, both the binderless LTA and SAPO-34 beads displayed a slightly sharper breakthrough and less significant tailing compared to commercial 4A beads. This was attributed to the open and accessible hierarchical pore structure of the binderless beads. The CO<small><sub>2</sub></small> adsorption capacity for the SAPO-34 beads was relatively stable over 5 cycles, while the LTA and commercial 4A beads displayed a significant decrease in adsorption capacity from the first to the second cycle. For the SAPO-34 beads, a cyclic adsorption capacity at breakthrough around 2 mmol g<small><sup>−1</sup></small> and a CO<small><sub>2</sub></small> productivity &gt; 3 mol kg<small><sup>−1</sup></small> h<small><sup>−1</sup></small> were achieved. These values are significantly higher than those of the LTA and commercial 4A beads, making the SAPO-34 beads a promising candidate for industrial application in VPSA.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00007b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of oxygen on NiO as a back buffer layer in CdTe solar cells 氧对碲化镉太阳能电池中作为背缓冲层的氧化镍的影响
IF 3.2
Energy advances Pub Date : 2024-05-30 DOI: 10.1039/D4YA00125G
Nicholas Hunwick, Xiaolei Liu, Mustafa Togay, John M. Walls, Jake Bowers and Patrick J. M. Isherwood
{"title":"The effect of oxygen on NiO as a back buffer layer in CdTe solar cells","authors":"Nicholas Hunwick, Xiaolei Liu, Mustafa Togay, John M. Walls, Jake Bowers and Patrick J. M. Isherwood","doi":"10.1039/D4YA00125G","DOIUrl":"10.1039/D4YA00125G","url":null,"abstract":"<p >Thin film CdTe-based photovoltaic devices have achieved high efficiency above 22%. However, the device performance is limited by large open circuit voltage deficit. One of the primary reasons is non-ohmic back contacts. In this work, nickel oxide is used as a back buffer layer to form an ohmic back contact. We comprehensively investigate oxygen effects during sputtering on film properties and device performance. Increased oxygen in the deposition environment led to darker films, increased carrier concentration, decreased mobility and decreased resistivity. X-ray photoelectron spectroscopy showed peak shifts favouring Ni<small><sup>3+</sup></small> over Ni<small><sup>2+</sup></small>, and X-ray diffraction demonstrated that crystallinity hit a peak at around 5% oxygen input. The NiO back buffer layer improves device performance by reducing barrier height at the gold back contact and improving valence band offset at the CdTe/NiO interface. The NiO layer deposited without oxygen improved the <em>V</em><small><sub>oc</sub></small> to 710 mV, from a baseline of 585 mV. At 5% and 20% oxygen content during deposition, efficiency improved relative to the reference due to an increase in open circuit voltage (<em>V</em><small><sub>oc</sub></small>) and short circuit current (<em>J</em><small><sub>sc</sub></small>). <em>V</em><small><sub>oc</sub></small> increase is due to improved valence band offset between CdTe and NiO. The large conduction band offset also reflects minority carriers away from the CdTe/NiO interface and reduces interface recombination. SCAPS simulations demonstrated that an increase in valence band offset has shown pronounced effects of both s-kinks and rollover.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00125g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic effects of electrolytes on lithium metal deposition and dissolution investigated through a separator-free cell† 通过无隔膜电池研究电解质对锂金属沉积和溶解的内在影响
IF 3.2
Energy advances Pub Date : 2024-05-29 DOI: 10.1039/D4YA00245H
Tomoki Takahashi, Di Wang, Jinkwang Hwang and Kazuhiko Matsumoto
{"title":"Intrinsic effects of electrolytes on lithium metal deposition and dissolution investigated through a separator-free cell†","authors":"Tomoki Takahashi, Di Wang, Jinkwang Hwang and Kazuhiko Matsumoto","doi":"10.1039/D4YA00245H","DOIUrl":"10.1039/D4YA00245H","url":null,"abstract":"<p >Lithium metal batteries are a significant promise for next-generation energy storage due to their high energy density. However, challenges persist in their commercialization stemming from issues during the lithium deposition/dissolution processes, such as low Coulombic efficiency, dendrite formation, and dead-lithium formation. Addressing these challenges requires careful electrolyte design to enhance the reversibility of the lithium metal negative electrode by modifying solvation structures and engineering interfaces. The Coulombic efficiency of lithium deposition/dissolution is one of the most crucial factors in evaluating the performance of electrolytes toward lithium metal, although this is influenced by various factors. In this study, a separator-free cell is adopted to minimize extraneous influences and focus on assessing the intrinsic effects of electrolytes on lithium deposition/dissolution. 48 different electrolytes based on three salts of Li[PF<small><sub>6</sub></small>], Li[FSA] and Li[TFSA] varying in solvents were investigated with or without additives. Moreover, Raman spectroscopy and X-ray photon spectroscopy enhance the discussion by revealing variations in the major species of solid electrolyte interphase components under different electrolyte conditions.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00245h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing of highly conductive carbon nanotube architectures towards carbon-based flexible thermoelectric generators 增材制造高导电性碳纳米管结构,实现碳基柔性热电发电机
IF 3.2
Energy advances Pub Date : 2024-05-29 DOI: 10.1039/D4YA00182F
Christos K. Mytafides, William J. Wright, Raden Gustinvil, Lazaros Tzounis, George Karalis, Alkiviadis S. Paipetis and Emrah Celik
{"title":"Additive manufacturing of highly conductive carbon nanotube architectures towards carbon-based flexible thermoelectric generators","authors":"Christos K. Mytafides, William J. Wright, Raden Gustinvil, Lazaros Tzounis, George Karalis, Alkiviadis S. Paipetis and Emrah Celik","doi":"10.1039/D4YA00182F","DOIUrl":"10.1039/D4YA00182F","url":null,"abstract":"<p >Moving the fabrication of electronics from the conventional 2D orientation to 3D space, necessitates the use of sophisticated additive manufacturing processes which are capable to deliver multifunctional materials and devices with exceptional spatial resolution. In this study, it is reported the nozzle-guided 3D-printing of highly conductive, epoxy-dispersed, single-walled carbon nanotube (SWCNT) architectures with embedded thermoelectric (TE) properties, capable to exploit significant waste thermal energy from the environment. In order to achieve high-resolution and continuous printing with the SWCNT-based paste through a confined nozzle geometry, <em>i.e.</em> without agglomeration and nozzle clogging, a homogeneous epoxy resin-dispersed SWCNT paste was produced. As a result, various 3D-printed structures with high SWCNT concentration (10 wt%) were obtained <em>via</em> shear-mixing processes. The 3D printed p- and n-type epoxy-dispersed SWCNT-based thermoelements exhibit high power factors of 102 and 75 μW mK<small><sup>−2</sup></small>, respectively. The manufactured 3D carbon-based thermoelectric generator (3D-CTEG) has the ability to stably operate at temperatures up to 180 °C in ambient conditions (1 atm, relative humidity: 50 ± 5% RH), obtaining TE values of an open-circuit voltage <em>V</em><small><sub>OC</sub></small> = 13.6 mV, short-circuit current <em>I</em><small><sub>SC</sub></small> = 1204 μA, internal resistance <em>R</em><small><sub>TEG</sub></small> = 11.3 Ohm, and a generated power output <em>P</em><small><sub>max</sub></small> = 4.1 μW at Δ<em>T</em> = 100 K (with <em>T</em><small><sub>Cold</sub></small> = 70 °C). The approach and methodology described in this study aims to increase the flexibility of integration and additive manufacturing processes for advanced 3D-printed conceptual devices and the development of multifunctional materials.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00182f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of a newly developed transition metal-doped HZSM-5 zeolite catalyst for single-step conversion of C1–C3 alcohols to fuel-range hydrocarbons† 新开发的掺杂过渡金属的 HZSM-5 沸石催化剂在将 C1-C3 醇单步转化为燃料级碳氢化合物中的性能评估
Energy advances Pub Date : 2024-05-29 DOI: 10.1039/D3YA00460K
Ifeanyi Michael Smarte Anekwe, Bilainu Oboirien and Yusuf Makarfi Isa
{"title":"Performance evaluation of a newly developed transition metal-doped HZSM-5 zeolite catalyst for single-step conversion of C1–C3 alcohols to fuel-range hydrocarbons†","authors":"Ifeanyi Michael Smarte Anekwe, Bilainu Oboirien and Yusuf Makarfi Isa","doi":"10.1039/D3YA00460K","DOIUrl":"10.1039/D3YA00460K","url":null,"abstract":"<p >This study investigated the performance of metal-doped HZSM-5 catalysts in the conversion of low alcohols to hydrocarbons (LATH). Catalysts, including unmodified HZSM-5 and metal-modified (Ni, Fe, and Co) HZSM-5, were evaluated at 350 and 400 °C with space velocities of 7 and 12 h<small><sup>−1</sup></small> for LATH conversion. Characterisation techniques such as XRD, FTIR, SEM-EDS, PSD, N<small><sub>2</sub></small> adsorption, and TGA-DTA were employed. The characterisation results showed the successful metal incorporation in the HZSM-5 support catalyst. The overall evaluation of catalyst performance for LATH conversion revealed that the metal-doped catalysts showed a clear preference for liquid hydrocarbons with &gt;99% average low alcohol conversion compared to the unmodified catalysts. In particular, Co/HZSM-5 and Fe/HZSM-5 showed a considerable preference for C<small><sub>5</sub></small>–C<small><sub>8</sub></small> (62.81% and 54.95%), while Ni/HZSM-5 improved the synthesis of C<small><sub>9</sub></small>–C<small><sub>12</sub></small> (11.40%), C<small><sub>12</sub></small><small><sup>+</sup></small> (20.91%) and BTX (7.01%). The study on coke deposition indicated that Ni/HZSM-5 exhibited stability with minimal coke formation, while Co/HZSM-5 experienced higher coke deposition and deactivation tendencies in MTH and ETH conversions, respectively. Co/HZSM-5 exhibited the lowest weight loss, whereas Fe/HZSM-5 showed lower stability in PTH conversion. Notably, Ni/HZSM-5 demonstrated remarkable stability and performance in LATH conversion. These findings contribute to the advancement of catalysis and the transition towards a sustainable energy future.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d3ya00460k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance and failure mechanisms of alkaline zinc anodes with addition of calcium zincate (Ca[Zn(OH)3]2·2H2O) under industrially relevant conditions† 添加锌酸钙(Ca[Zn(OH)3]2-2H2O)的碱性锌阳极在工业相关条件下的性能和失效机理
IF 3.2
Energy advances Pub Date : 2024-05-28 DOI: 10.1039/D4YA00093E
Patrick K. Yang, Damon E. Turney, Michael Nyce, Bryan R. Wygant, Timothy N. Lambert, Stephen O'Brien, Gautam G. Yadav, Meir Weiner, Shinju Yang, Brendan E. Hawkins and Sanjoy Banerjee
{"title":"Performance and failure mechanisms of alkaline zinc anodes with addition of calcium zincate (Ca[Zn(OH)3]2·2H2O) under industrially relevant conditions†","authors":"Patrick K. Yang, Damon E. Turney, Michael Nyce, Bryan R. Wygant, Timothy N. Lambert, Stephen O'Brien, Gautam G. Yadav, Meir Weiner, Shinju Yang, Brendan E. Hawkins and Sanjoy Banerjee","doi":"10.1039/D4YA00093E","DOIUrl":"10.1039/D4YA00093E","url":null,"abstract":"<p >Additions of calcium zincate (CaZn<small><sub>2</sub></small>(OH)<small><sub>6</sub></small>·2H<small><sub>2</sub></small>O, CaZn) to zinc (Zn) anodes in alkaline batteries have been investigated and were found to remarkably increase cycle life at high 50% Zn utilization of the anode's theoretical capacity, thereby significantly reducing anode costs. A spectrum of anode formulations with increasing CaZn (0%, 30%, 70%, 100%) in mixtures with metallic Zn is investigated along with minor additions of Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>, acetylene carbon black, and CTAB. The total molar zinc content is normalized; thus, electrode capacity is kept comparable, resulting in electrodes relevant to real world use cases. We report details of the cell design, electrolyte composition, electrode design, and cycle testing procedure, all of which are kept close to industrially relevant values. A pure CaZn anode with acetylene carbon was shown to achieve 1062 cycles at 20% Zn utilization in ZnO saturated 20 wt% KOH whereas traditional Zn anodes only utilize 10% for similar cycle life. At high 50% Zn utilization, CaZn anodes achieved ∼280 cycles while Zn anodes achieved ∼50 cycles, resulting in a five-fold improvement in cycle life resulting in approximately ∼25% reduction in cost per cycle. Scanning electron microscopy analysis of cycled electrodes shows that adding CaZn reduces electrode failure by slowing down formation of a passivating zinc oxide layer at the surface of the electrode as well as decreases shape change. This appears to occur because zinc and calcium remain intimately mixed forming CaZn, which reduces dissolution and reprecipitation, but slowly will segregate as inactive materials are pushed to the surface where conductivity is lower.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00093e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel polyelectrolytes as hole transporting materials for organic and perovskite solar cell applications† 将镍多电解质作为有机和包光体太阳能电池应用的空穴传输材料
IF 3.2
Energy advances Pub Date : 2024-05-27 DOI: 10.1039/D4YA00081A
Jin Hee Lee, Kausar Ali Khawaja, Faiza Shoukat, Yeasin Khan, Do Hui Kim, Shinuk Cho, Bright Walker and Jung Hwa Seo
{"title":"Nickel polyelectrolytes as hole transporting materials for organic and perovskite solar cell applications†","authors":"Jin Hee Lee, Kausar Ali Khawaja, Faiza Shoukat, Yeasin Khan, Do Hui Kim, Shinuk Cho, Bright Walker and Jung Hwa Seo","doi":"10.1039/D4YA00081A","DOIUrl":"10.1039/D4YA00081A","url":null,"abstract":"<p >Engineering interfacial materials for use between the active layer and the electrodes in organic and perovskite solar cells is one of the most effective ways to increase device efficiency. Despite decades of development, new materials continue to emerge offering improved performance and streamlined fabrication of devices. Here, a hole transport layer (HTL) for organic and perovskite solar cells combining poly(styrene sulfonate) (PSS) and nickel (Ni<small><sup>2+</sup></small>) is presented. P-type carriers and p-doping at the anode are stabilized by the PSS backbone's negatively charged state. The impact of ionic moieties on the electronic band structure and characteristics of organic and perovskite solar cells must be understood. The combination of Nickel(<small>II</small>): poly(styrene sulfonate) (Ni:PSS) and poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) can improve efficiency to 15.67% (perovskite solar cell) and 16.90% (organic solar cell) over traditional Ni:PSS and PEDOT:PSS. Ultraviolet photoelectron spectroscopic observations at HTL/donor interfaces indicate energy level alignment, which is the cause of various changes in device performance. Low ionization potential (IP) and hole injection barrier (<em>ϕ</em><small><sub>h</sub></small>) are essential at the HTL/donor interface for effective charge extraction in organic and perovskite solar cells.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00081a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing direct air capture under varying weather conditions† 在不同天气条件下优化直接空气捕获
IF 3.2
Energy advances Pub Date : 2024-05-27 DOI: 10.1039/D4YA00200H
H. M. Schellevis, J. D. de la Combé and D. W. F. Brilman
{"title":"Optimizing direct air capture under varying weather conditions†","authors":"H. M. Schellevis, J. D. de la Combé and D. W. F. Brilman","doi":"10.1039/D4YA00200H","DOIUrl":"10.1039/D4YA00200H","url":null,"abstract":"<p >CO<small><sub>2</sub></small> from adsorption with supported-amine sorbents using steam-assisted temperature-vacuum swing adsorption is a technology to capture CO<small><sub>2</sub></small> from the atmosphere (direct air capture). This process has many operational parameters and, on top of that, is heavily influenced by the ambient temperature and relative humidity. Identifying the minimum cost of direct air capture becomes a multi-dimensional problem in which climate conditions has to be incorporated as well. This study aims to evaluate the cost of direct air capture for year-round operation and to relate this to climate conditions. An optimization framework was developed with the ambient conditions as input parameters. This framework is able to find the minimum cost of direct air capture for a given fixed bed DAC facility and provides the corresponding operational parameters. These results were coupled to year-round weather data to find the total costs for continuous operation. We showed that the cost of CO<small><sub>2</sub></small> capture from air correlates well with the average annual temperature, with a high average temperature being more beneficial. Furthermore, climates with strong variation in weather conditions over the seasons require dynamic process control in order to operate at minimum cost of DAC. Overall, the presented optimization framework is an excellent tool to identify suitable locations for direct air capture and provide the operational parameters to minimize its cost.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00200h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic Ni-doping improved electrocatalytic H2 production by Bi3O4Br in alkaline water† 策略性掺杂镍改善了 Bi3O4Br 在碱性水中的电催化 H2 产率
IF 3.2
Energy advances Pub Date : 2024-05-24 DOI: 10.1039/D4YA00228H
Manodip Pal, Rathindranath Biswas, Sanmitra Barman and Arnab Dutta
{"title":"Strategic Ni-doping improved electrocatalytic H2 production by Bi3O4Br in alkaline water†","authors":"Manodip Pal, Rathindranath Biswas, Sanmitra Barman and Arnab Dutta","doi":"10.1039/D4YA00228H","DOIUrl":"10.1039/D4YA00228H","url":null,"abstract":"<p >Establishing a cost-effective and efficient electrocatalytic pathway for the hydrogen evolution reaction (HER) is the key to our quest for a carbon-neutral energy landscape. We report a simple and straightforward approach to synthesize an efficient, stable, and low-cost noble metal-free Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br electrocatalyst. Tactical doping of Ni ions into Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br effectively enhanced the conductivity, accelerated the charge transfer process, and provided more catalytic active sites to significantly boost the alkaline electrochemical HER performance of Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br. This Ni-doped Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br exhibited a lower overpotential of 662 mV compared to that of Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br (736 mV) at a higher current density (50 mA cm<small><sup>−2</sup></small>). Additionally, the HER kinetics were also enhanced in terms of Tafel slope for this doped material (159 mV dec<small><sup>−1</sup></small>) compared to the pristine Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br (245 mV dec<small><sup>−1</sup></small>), which coincides with a significant improvement in the mass activity (52 A g<small><sup>−1</sup></small> to 98 A g<small><sup>−1</sup></small>). Notably, the overpotential of Ni-doped Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br was further reduced to 614 mV at the same current density of 50 mA cm<small><sup>−2</sup></small> during photoelectrochemical HER performance testing, and the faradaic efficiency was improved from 79% to 87%. Finally, an enhanced durability of the material was observed for Bi<small><sub>3</sub></small>O<small><sub>4</sub></small>Br following the Ni-doping. Hence, this strategy highlights the importance of unravelling upgraded catalytic behaviour for abundant materials with rational doping.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00228h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic synergy of tin in the electron-transfer layer and absorber layer for advancing perovskite solar cells: a comprehensive review 电子传输层和吸收层中锡的动态协同作用促进了过氧化物太阳能电池的发展:全面综述
IF 3.2
Energy advances Pub Date : 2024-05-23 DOI: 10.1039/D4YA00204K
Azaharuddin Saleem Shaikh, Subhash Chand Yadav, Abhishek Srivastava, Archana R. Kanwade, Manish Kumar Tiwari, Shraddha Manohar Rajore, Jena Akash Kumar Satrughna, Mahesh Dhonde and Parasharam M. Shirage
{"title":"Dynamic synergy of tin in the electron-transfer layer and absorber layer for advancing perovskite solar cells: a comprehensive review","authors":"Azaharuddin Saleem Shaikh, Subhash Chand Yadav, Abhishek Srivastava, Archana R. Kanwade, Manish Kumar Tiwari, Shraddha Manohar Rajore, Jena Akash Kumar Satrughna, Mahesh Dhonde and Parasharam M. Shirage","doi":"10.1039/D4YA00204K","DOIUrl":"10.1039/D4YA00204K","url":null,"abstract":"<p >The landscape of metal halide-perovskite solar cells (MH-PSCs) has witnessed significant progress in terms of efficiency over the past decade. Nevertheless, concerns over the toxicity of lead (Pb)-based perovskite structures have restrained their full market potential. In response, the exploration of Sn perovskites has emerged as a promising alternative, fueled by their narrow band gaps, superior carrier mobilities, low-temperature production, economic viability, and reduced hysteresis. These Sn perovskites exhibit competitive PCE while addressing the toxicity issues of Pb-based PSCs. This comprehensive review delves into the pivotal role of Sn in advancing PSCs, offering a consolidated understanding of its multifaceted applications. The report extensively examines the incorporation of Sn-based electron-transfer layers (ETLs) and absorber layers within PSCs, encompassing various dimensions, such as synthesis techniques, optoelectrical features, the future of Pb-free solar cells, integration into double PSCs, and the impact of doping strategies. Finally, this review proposes the future perspectives and investigations needed to make Sn-based PSCs a viable alternative to Pb-based MH-PSCs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00204k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信