Yahang Wang , Lujun Zhu , Jingwei Li , Weibin Zhang , Xianjin Shi , Yu Huang , Mirabbos Hojamberdiev , Gangqiang Zhu
{"title":"Metal support interaction of defective-rich CuO and Au with enhanced CO low-temperature catalytic oxidation and moisture resistance","authors":"Yahang Wang , Lujun Zhu , Jingwei Li , Weibin Zhang , Xianjin Shi , Yu Huang , Mirabbos Hojamberdiev , Gangqiang Zhu","doi":"10.1016/j.apmate.2023.100119","DOIUrl":"https://doi.org/10.1016/j.apmate.2023.100119","url":null,"abstract":"<div><p>Water is considered to be an inhibitor of CO oxidation. The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation, which is investigated by constructing the coupling of Au nanoparticles and defective CuO to form metal-support interactions (MSI) and oxygen vacancies (OVs). The introduction of Au forms a new CO adsorption site, which successfully solves the competitive adsorption problem of CO with H<sub>2</sub>O and O<sub>2</sub>. Due to the coupling of MSI and OVs, the reduced ability of catalyst and the activation and migration ability of oxygen are enhanced simultaneously. Au-CuO has the ability to oxidize CO at room temperature with high stability under a humid environment. Theoretical calculation confirmed the competitive adsorption and the influence of MSI and OVs coupling on the catalyst performance. The mechanism of water resistance in CO catalytic oxidation was also explained.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zongge Li , Chenwei Wang , Anuj Kumar , Hongrui Jia , Yin Jia , Huifang Li , Lu Bai , Guoxin Zhang , Xiaoming Sun
{"title":"Anisotropic solution growth of 1D/2D N-rich carbon","authors":"Zongge Li , Chenwei Wang , Anuj Kumar , Hongrui Jia , Yin Jia , Huifang Li , Lu Bai , Guoxin Zhang , Xiaoming Sun","doi":"10.1016/j.apmate.2023.100138","DOIUrl":"https://doi.org/10.1016/j.apmate.2023.100138","url":null,"abstract":"<div><p>Despite the fact that low-dimensional carbons (LDCs, 1D/2D) materials are very interesting due to their intriguing electrical properties, we still attempt to enrich them by high N-content in order to enjoy their electro-applications. We here report a template-free synthesis of 1D/2D LDC with high N content (>40 at%) and tunable aspect ratios from molecular formamide (FA). The 1D/2D LDC is in polyaminoimidazole as confirmed by pair distribution function analysis, and 1D growth mode can be altered to 2D by simply adding a 2D-guiding molecule of melamine. Electrochemical properties of the LDC can be finely tuned by adjusting the solvothermal temperature and melamine dosage. It is revealed that the optimal 2D LDC delivers superior O<sub>2</sub>-to-H<sub>2</sub>O<sub>2</sub> yield (687.2 mmol·g<sup>−1</sup>⋅h<sup>−1</sup>) and Faradic efficiency (87.5%). Considering the heavy N content and high adjustability of aspect ratio, the FA-derived LDCs potentially open new synthesis routes for structural carbon materials for broad electrochemical applications.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jincheng Wang , Rui Zhu , Yujing Liu , Laichang Zhang
{"title":"Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization","authors":"Jincheng Wang , Rui Zhu , Yujing Liu , Laichang Zhang","doi":"10.1016/j.apmate.2023.100137","DOIUrl":"https://doi.org/10.1016/j.apmate.2023.100137","url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) has made significant progress in producing solid and porous metal parts with complex shapes and geometries. However, LPBF produced parts often have defects (e.g., porosity, residual stress, and incomplete melting) that hinder its large-scale industrial commercialization. The LPBF process involves complex heat transfer and fluid flow, and the melt pool is a critical component of the process. The melt pool stability is a critical factor in determining the microstructure, mechanical properties, and corrosion resistance of LPBF produced metal parts. Furthermore, optimizing process parameters for new materials and designed structures is challenging due to the complexity of the LPBF process. This requires numerous trial-and-error cycles to minimize defects and enhance properties. This review examines the behavior of the melt pool during the LPBF process, including its effects and formation mechanisms. This article summarizes the experimental results and simulations of melt pool and identifies various factors that influence its behavior, which facilitates a better understanding of the melt pool's behavior during LPBF. This review aims to highlight key aspects of the investigation of melt pool tracks and microstructural characterization, with the goal of enhancing a better understanding of the relationship between alloy powder-process-microstructure-properties in LPBF from both single- and multi-melt pool track perspectives. By identifying the challenges and opportunities in investigating single- and multi-melt pool tracks, this review could contribute to the advancement of LPBF processes, optimal process window, and quality optimization, which ultimately improves accuracy in process parameters and efficiency in qualifying alloy powders.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49712168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongsheng Sun , Meihua Chen , Puxian Xiong , Yuzhen Wang , Shuhang Tian , Qingquan Jiang , Yao Xiao , Hongyou Zhou , Peishan Shao , Qiuqiang Zhan , Jiulin Gan , Qi Qian , Dongdan Chen , Zhongmin Yang
{"title":"Integrated multi-mode glass ceramic fiber for high-resolution temperature sensing","authors":"Yongsheng Sun , Meihua Chen , Puxian Xiong , Yuzhen Wang , Shuhang Tian , Qingquan Jiang , Yao Xiao , Hongyou Zhou , Peishan Shao , Qiuqiang Zhan , Jiulin Gan , Qi Qian , Dongdan Chen , Zhongmin Yang","doi":"10.1016/j.apmate.2023.100132","DOIUrl":"https://doi.org/10.1016/j.apmate.2023.100132","url":null,"abstract":"<div><p>Optical temperature sensors, which can accurately detect temperature in biological systems, are crucial to the development of healthcare monitoring. To challenge the state-of-art technology, it is necessary to design single luminescence center doped materials with multi-wavelength emission for optical temperature sensors with more modes and higher resolution. Here, an Er<sup>3+</sup> single-doped KYF<sub>4</sub> nanocrystals glass ceramic with an obvious thermochromic phenomenon is reported for the first time, which shows a different temperature-dependent green, red, and near-infrared luminescence behavior based on thermal disturbance model. In addition, Er<sup>3+</sup> single-doped GC fiber was drawn and fabricated into multi-mode optical fiber temperature sensor, which has superior measured temperature resolution (<0.5 °C), excellent detection limit (0.077 °C), and high correlation coefficient (<em>R</em><sup>2</sup>) of 0.99997. More importantly, this sensor can monitor temperature in different scenarios with great environmental interference resistance and repeatability. These results indicate that our sensor shows great promise as a technology for environmental and healthcare monitoring, and it provides a route for the design of optical fiber temperature sensors with multi-mode and high resolution.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheng Li , Yatian Deng , Liping Yang , Bo Liu , Dong Yan , Liyuan Fan , Jian Li , Lichao Jia
{"title":"An active and stable hydrogen electrode of solid oxide cells with exsolved Fe–Co–Ni nanoparticles from Sr2FeCo0.2Ni0.2Mo0.6O6-δ double-perovskite","authors":"Cheng Li , Yatian Deng , Liping Yang , Bo Liu , Dong Yan , Liyuan Fan , Jian Li , Lichao Jia","doi":"10.1016/j.apmate.2023.100133","DOIUrl":"https://doi.org/10.1016/j.apmate.2023.100133","url":null,"abstract":"<div><p>Sr<sub>2</sub>FeCo<sub>0.2</sub>Ni<sub>0.2</sub>Mo<sub>0.6</sub>O<sub>6-δ</sub> (SFCNM) and Sr<sub>2</sub>FeNi<sub>0.4</sub>Mo<sub>0.6</sub>O<sub>6-δ</sub> (SFNM) were prepared as the hydrogen electrode materials for solid oxide cells (SOCs) and comparatively investigated by density function theory (DFT) and experiments to demonstrate the benefit of Co addition. The reduced SFCNM (R-SFCNM) and SFNM (R-SFNM) contain exsolved Fe–Co–Ni and Fe–Ni nanoparticles, respectively. DFT indicates that Fe–Co–Ni has optimized combination of the d-band center (descriptor of catalyst activity) and adsorption behavior for H<sub>2</sub>O, H<sub>2</sub>, H, and OH. The cell with SFCNM hydrogen electrode, La<sub>0.8</sub>Sr<sub>0.2</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>3-δ</sub> (LSGM) electrolyte, and La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF) oxygen electrode (Cell-SFCNM) demonstrates a higher performance than that with an SFNM hydrogen electrode (Cell-SFNM) at temperatures between 700 and 850 °C in both solid oxide fuel cell (SOFC, 3% H<sub>2</sub>O-97% H<sub>2</sub>/air) and solid oxide electrolysis cell (SOEC, 20% H<sub>2</sub>O-80% H<sub>2</sub>/air) modes. At 850 and 700 °C, the peak power density is 1.23 and 0.48 W·cm<sup>−2</sup> in SOFC mode, while the current density is 1.25 and 0.37 A·cm<sup>−2</sup> at 1.3 V in SOEC mode, respectively. The performance degradation rates at 750 °C are 0.17 mV·h<sup>−1</sup> in SOFC and 0.15 mV·h<sup>−1</sup> in SOEC modes within 150 h, which are improved by Co doping.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zibo Niu , Daxin Li , Dechang Jia , Zhihua Yang , Kunpeng Lin , Ralf Riedel , Paolo Colombo , Yu Zhou
{"title":"Oxidation behavior of amorphous and nanocrystalline SiBCN ceramics – Kinetic consideration and microstructure","authors":"Zibo Niu , Daxin Li , Dechang Jia , Zhihua Yang , Kunpeng Lin , Ralf Riedel , Paolo Colombo , Yu Zhou","doi":"10.1016/j.apmate.2023.100163","DOIUrl":"10.1016/j.apmate.2023.100163","url":null,"abstract":"<div><p>In this study, the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were analyzed. The amorphous structure has exceptionally high oxidation activity but presents much better oxidation resistance due to its synchronous oxidation of atomic units and homogeneous composition in the generated oxide layer. However, the oxidation resistance of SiBCN ceramic will degrade during the continual crystallization process, especially for the formation of the nanocapsule-like structure, due to heterogeneous oxidation caused by the phase separation. Besides, the activation energy and rate-controlling mechanism of the atomic units and phases in SiBCN ceramics were obtained. The BNC<sub><em>x</em></sub> (<em>E</em><sub>a</sub> = 145 kJ/mol) and SiC<sub>(2-<em>x</em>)</sub> (<em>E</em><sub>a</sub> = 364 kJ/mol) atomic units in amorphous SiBCN structure can be oxidized at relatively lower temperatures with much lower activation energy than the corresponding BN(C) (<em>E</em><sub>a</sub> = 209 kJ/mol) and SiC (<em>E</em><sub>a</sub> = 533 kJ/mol) phases in crystalline structure, and the synchronous oxidation of the SiC<sub>(2-<em>x</em>)</sub> and BNC<sub><em>x</em></sub> units above 750 °C changes the oxidation activation energy of BNC<sub><em>x</em></sub> (<em>E</em><sub>a</sub> = 332 kJ/mol) to that similar to SiC<sub>(2-<em>x</em>)</sub>. The heterogeneous oxide layer formed from the nanocapsule-like structure will decrease the activation energy SiC (<em>E</em><sub>a</sub> = 445 kJ/mol) and t-BN (<em>E</em><sub>a</sub> = 198 kJ/mol).</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 1","pages":"Article 100163"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000556/pdfft?md5=1ba97d5d5fa6120b6608853b4c846c4b&pid=1-s2.0-S2772834X23000556-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134994750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guolong Lu , Ge Meng , Qian Liu , Ligang Feng , Jun Luo , Xijun Liu , Yang Luo , Paul K. Chu
{"title":"Advanced strategies for solid electrolyte interface design with MOF materials","authors":"Guolong Lu , Ge Meng , Qian Liu , Ligang Feng , Jun Luo , Xijun Liu , Yang Luo , Paul K. Chu","doi":"10.1016/j.apmate.2023.100154","DOIUrl":"10.1016/j.apmate.2023.100154","url":null,"abstract":"<div><p>Emerging energy technologies, aimed at addressing the challenges of energy scarcity and environmental pollution, have become a focal point for society. However, these actualities present significant challenges for modern energy storage devices. Lithium metal batteries (LMBs) have gained considerable attention due to their high energy density. Nonetheless, their use of liquid electrolytes raises safety concerns, including dendritic growth, electrode corrosion, and electrolyte decomposition. In light of these challenges, solid-state batteries (SSBs) have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density. Metal organic frameworks (MOFs), characterized by their porous structure, ordered crystal frame, and customizable configuration, have garnered interest as potential materials for enhancing solid-state electrolytes (SSEs) in SSBs. The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes. This is made possible by leveraging the high porosity, functionalized structures, and abundant open metal sites of MOFs. However, the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs (LMSSBs) remains a significant challenge. In this comprehensive review, we present an overview of recent advancements in MOF-based SSEs for LMSSBs, focusing on strategies for interface optimization and property enhancement. We categorize these SSEs into two main types: MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes. Within these categories, various subtypes are identified based on the combination mode, additional materials, formation state, preparation method, and interface optimization measures employed. The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs. By providing a comprehensive assessment of the applications of MOFs in LMSSBs, this review aims to offer valuable insights and guidance for the development of MOF-based SSEs, addressing the key issues faced by these materials in SSBs technology.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 1","pages":"Article 100154"},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000465/pdfft?md5=cb721ce40170afc0e0ef8948448cc958&pid=1-s2.0-S2772834X23000465-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83853586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feiyue Yang , Shuang Zhao , Guobing Chen , Kunfeng Li , Zhifang Fei , Paul Mummery , Zichun Yang
{"title":"High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure","authors":"Feiyue Yang , Shuang Zhao , Guobing Chen , Kunfeng Li , Zhifang Fei , Paul Mummery , Zichun Yang","doi":"10.1016/j.apmate.2023.100153","DOIUrl":"10.1016/j.apmate.2023.100153","url":null,"abstract":"<div><p>The quest for lightweight and functional materials poses stringent requirements on mechanical performance of porous materials. However, the contradiction between high strength and elevated porosity of porous materials severely limits their application scenarios in emerging fields. Herein, high-strength multifunctional mullite-based porous ceramic monoliths were fabricated utilizing waste fly ash hollow microspheres (FAHMs) by the protein gelling technique. Owing to their unique shell-pore structure inspired by shell-protected biomaterials, the monoliths with porosity of 54.69%–70.02% exhibited a high compressive strength (32.3–42.9 MPa) which was 2–5 times that of mullite-based porous ceramics with similar density reported elsewhere. Moreover, their pore structure and properties could be tuned by regulation of the particle size and content of the FAHMs, and the resultant monoliths demonstrated superior integrated performances for multifunctional applications, such as broadband sound insulation, efficient thermal insulation, and high-temperature fire resistance (>1300 °C). On this basis, mullite-based porous ceramic lattices (porosity 68.28%–84.79%) with a hierarchical porous structure were successfully assembled by direct ink writing (DIW), which exhibited significantly higher compressive strength (3.02–10.77 MPa) than most other ceramic lattices with comparable densities. This unique shell-pore structure can be extended to other porous materials, and our strategy paves a new way for cost-effective, scalable and green production of multifunctional materials with well-defined microstructure.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 1","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000453/pdfft?md5=52281a2f7752c6cda4ac61421c07dd8c&pid=1-s2.0-S2772834X23000453-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75734152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyu Liu , Jiang Wang , Tao Hu , Songzhe Xu , Sansan Shuai , Weidong Xuan , Shuo Yin , Chaoyue Chen , Zhongming Ren
{"title":"Laser powder bed fusion of a Ni3Al-based intermetallic alloy with tailored microstructure and superior mechanical performance","authors":"Mingyu Liu , Jiang Wang , Tao Hu , Songzhe Xu , Sansan Shuai , Weidong Xuan , Shuo Yin , Chaoyue Chen , Zhongming Ren","doi":"10.1016/j.apmate.2023.100152","DOIUrl":"10.1016/j.apmate.2023.100152","url":null,"abstract":"<div><p>Ni<sub>3</sub>Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties. This study aims at laser powder bed fusion and post-hot isostatic pressing (HIP) treatment of Ni<sub>3</sub>Al-based IC-221 M alloy with a high γ′ volume fraction. The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking, and the laser parameter optimization can reduce the crack density to 1.34 mm/mm<sup>2</sup>. Transmission electron microscope (TEM) analysis reveals ultra-fine nanoscale γ′ phases in the as-built samples due to the high cooling rate during rapid solidification. After HIP treatment, a fully dense structure without cracking defects is achieved, which exhibits an equiaxed structure with grain size ∼120–180 μm and irregularly shaped γ′ precipitates ∼1–3 μm with a prominently high fraction of 86%. The room-temperature tensile test of as-built samples shows a high ultimate tensile strength (<em>σ</em><sub>UTS</sub>) of 1039.7 MPa and low fracture elongation of 6.4%. After HIP treatment, a significant improvement in ductility (15.7%) and a slight loss of strength (<em>σ</em><sub>UTS</sub> of 831.7 MPa) are obtained by eliminating the crack defects. Both the as-built and HIP samples exhibit retained high <em>σ</em><sub>UTS</sub> values of 589.8 MPa and 786.2 MPa, respectively, at 900 °C. The HIP samples exhibita slight decrease in ductility to ∼12.9%, indicating excellent high-temperature mechanical performance. Moreover, the abnormal increase in strength and decrease in ductility suggest the critical role of a high γ′ fraction in cracking formation. The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility. The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni<sub>3</sub>Al-based alloy, making it a promising material for high-temperature applications.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 1","pages":"Article 100152"},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000441/pdfft?md5=920cae6cedeb9df7a696f6200100a673&pid=1-s2.0-S2772834X23000441-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76167619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Zhao , Cao Zhou , Yue Guo , Zhen Shen , Geng Luo , Qiang Wu , Lijun Yang , Xizhang Wang , Zheng Hu
{"title":"Balancing loading mass and gravimetric capacitance of NiCo−layered double hydroxides to achieve ultrahigh areal performance for flexible supercapacitors","authors":"Jie Zhao , Cao Zhou , Yue Guo , Zhen Shen , Geng Luo , Qiang Wu , Lijun Yang , Xizhang Wang , Zheng Hu","doi":"10.1016/j.apmate.2023.100151","DOIUrl":"10.1016/j.apmate.2023.100151","url":null,"abstract":"<div><p>Delivering high areal capacitance (<em>C</em><sub>A</sub>) at high rates is crucial but challenging for flexible supercapacitors. <em>C</em><sub>A</sub> is the product of areal loading mass (<em>M</em><sub>A</sub>) and gravimetric capacitance (<em>C</em><sub>W</sub>). Finding and understanding the balance between <em>M</em><sub>A</sub> and <em>C</em><sub>W</sub> of supercapacitor materials is significant for designing high-<em>C</em><sub>A</sub> electrodes. Herein, we have systematically studied the correlation between <em>M</em><sub>A</sub> and <em>C</em><sub>W</sub> of the nanosheet arrays of NiCo−layered double hydroxide (NiCo−LDH), which were electrodeposited on carbon cloth with different heights to adjust the <em>M</em><sub>A</sub>, accompanied by the interlayer distance regulation to improve the <em>C</em><sub>W</sub>. The optimal <em>C</em><sub>W</sub> performance is achieved at the best charge transfer kinetics for each of <em>M</em><sub>A</sub> series. The NiCo−LDH electrode with the suitable <em>M</em><sub>A</sub> (2.58 mg cm<sup>−2</sup>) and the relatively high <em>C</em><sub>W</sub> (1918 F g<sup>−1</sup> at 5 A g<sup>−1</sup> and 400 F g<sup>−1</sup> at 150 A g<sup>−1</sup>) present a high <em>C</em><sub>A</sub> of 4948 mF cm<sup>−2</sup> at 12.9 mA cm<sup>−2</sup> and a record-high 1032 mF cm<sup>−2</sup> among LDHs-based flexible electrodes at an ultrahigh current density of 387 mA cm<sup>−2</sup>. The corresponding flexible supercapacitor coupled with activated carbon delivers a high energy density of 0.28 mWh cm<sup>−2</sup> at an ultrahigh power density of 712 mW cm<sup>−2</sup>, showing great potential applications.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 1","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X2300043X/pdfft?md5=270ecc38af71e922386ea714fca9813a&pid=1-s2.0-S2772834X2300043X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79372818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}