Puying Liang , Zhouping Wang , Shiyu Liao , Yang Lou , Jiawei Zhang , Chengsi Pan , Yongfa Zhu , Jing Xu
{"title":"Atomically dispersed Fe boosting elimination performance of g-C3N4 towards refractory sulfonic azo compounds via catalyst-contaminant interaction","authors":"Puying Liang , Zhouping Wang , Shiyu Liao , Yang Lou , Jiawei Zhang , Chengsi Pan , Yongfa Zhu , Jing Xu","doi":"10.1016/j.apmate.2024.100251","DOIUrl":"10.1016/j.apmate.2024.100251","url":null,"abstract":"<div><div>Herein, an oxygen-doped porous g-C<sub>3</sub>N<sub>4</sub> photocatalyst modified with atomically dispersed Fe (Fe<sub>1</sub>/OPCN) is successfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants from water via catalyst-contaminant interaction. The elimination performance of Fe<sub>1</sub>/OPCN towards acid red 9, acid red 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increases gradually. The amaranth degradation rate of Fe<sub>1</sub>/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton and OPCN, respectively. In addition, Fe<sub>1</sub>/OPCN also has more outstanding removal activities towards other contaminants with sulfonic acid and azo groups alone. The considerable enhancement for removing sulfonic azo contaminants of Fe<sub>1</sub>/OPCN is mainly ascribed to the following aspects: (1) The modified Fe could enhance the adsorption towards sulfonic azo compounds to accelerate the mass transfer, act as e<sup>−</sup> acceptor to promote interfacial charge separation, and trigger the self-Fenton reaction to convert in-situ generated H<sub>2</sub>O<sub>2</sub> into •OH. (2) Fe(Ⅲ) could coordinate with <strong>—</strong>N=N<strong>—</strong> to form d-π conjugation, which could attract e<sup>−</sup> transfer to attack <strong>—</strong>N=N<strong>—</strong> bond. Meanwhile, the inhibited charge recombination could release more free h<sup>+</sup> to oxidize sulfonic acid groups into SO<sub>4</sub><sup>−</sup>•. (3) Under the cooperation of abundant multiple active species (<em>•</em>O<sub>2</sub><sup>−</sup>, h<sup>+</sup>, e<sup>−</sup>, <em>•</em>OH, SO<sub>4</sub><sup>−</sup>•) formed during the degradation reaction, sulfonic azo compounds could be completely mineralized into harmless small molecules (CO<sub>2</sub>, H<sub>2</sub>O, etc.) by means of <strong>—</strong>N=N<strong>—</strong> cleavage, hydroxyl substitution, and aromatic ring opening. This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds from wastewater.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100251"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
En Yang , Mengna Zhang , Shuaishuai Wei , Dan Liang , Mustafa Zeb , Liping Zhang , Yoonseob Kim , Yuan Zhao , Wei Ma
{"title":"Controllable synthesis and heterogeneous tailoring of 1D perovskites, emerging properties and applications","authors":"En Yang , Mengna Zhang , Shuaishuai Wei , Dan Liang , Mustafa Zeb , Liping Zhang , Yoonseob Kim , Yuan Zhao , Wei Ma","doi":"10.1016/j.apmate.2024.100250","DOIUrl":"10.1016/j.apmate.2024.100250","url":null,"abstract":"<div><div>One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskite types, making them a focal point in photoelectric research. In recent years, there has been a significant surge in interest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by advancements in synthesis techniques and notable breakthroughs in novel methodologies and application properties. This article provides a comprehensive review of the progress made in research on one-dimensional anisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhancement in various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect in tailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesis methods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, categorizing them into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, and the ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricating heterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence the interfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performance applications, exploring how heterogeneous effects can enhance performance and drive the development of heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting diodes, and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunities offered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their production and application landscapes.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100250"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang
{"title":"Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium","authors":"Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang","doi":"10.1016/j.apmate.2024.100248","DOIUrl":"10.1016/j.apmate.2024.100248","url":null,"abstract":"<div><div>LiNiO<sub>2</sub> (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li<sub>2</sub>WO<sub>4</sub> grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 wt% W-doped sample provides a significant improved capacity retention of 88.5 % compared with the pristine LNO (80.7 %) after 100 cycles at 2.8–4.3 V under 1C.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100248"},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor","authors":"Miaoran Zhang, Tengyu Yao, Tiezhu Xu, Xinji Zhou, Duo Chen, Laifa Shen","doi":"10.1016/j.apmate.2024.100247","DOIUrl":"10.1016/j.apmate.2024.100247","url":null,"abstract":"<div><div>The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H<sup>+</sup>, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 F cm<sup>−2</sup> at 30.78 mg cm<sup>−2</sup>) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 mWh cm<sup>−2</sup> at −60 °C, as well as operates well even at −80 °C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100247"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in electrocatalytic urea synthesis: From fundamentals to applications","authors":"Zhenlin Mo, Jincheng Mu, Baojun Liu","doi":"10.1016/j.apmate.2024.100245","DOIUrl":"10.1016/j.apmate.2024.100245","url":null,"abstract":"<div><div>The electrocatalytic synthesis of urea (ESU) is a green and sustainable alternative to conventional production methods, and the related research is still in its infancy. Up to now, the field has been explored by several reviews, however, the authors are focusing on some particular problems and could not provide a holistic view of the ESU. Based on these considerations, the novelty of this review lies in its comprehensive and systematic framework, as well as its in-depth analysis and general summary of several key issues. Hence, in this review, we critically evaluated the ESU through in-depth studies of various aspects, including nitrogen sources, catalysts choice, conditions modifications, detection methods, product calculations, and mechanisms evaluation, etc. In addition, after analyzing the reaction routes, reaction kinetics/thermodynamics and techno-economics assessment are also investigated. Finally, the summary and outlook are presented eventually, providing valuable insights for the related research. We believe that we will provide researchers with a comprehensive and clear picture of green synthesized urea, which is of great academic and practical significance.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100245"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heteroatom doping in 2D MXenes for energy storage/conversion applications","authors":"Sumanta Sahoo , Rajesh Kumar , Iftikhar Hussain , Kaili Zhang","doi":"10.1016/j.apmate.2024.100246","DOIUrl":"10.1016/j.apmate.2024.100246","url":null,"abstract":"<div><div>MXenes (inorganic metal carbides, nitrides, and carbonitrides) are currently the rising star of two-dimensional (2D) family. After its discovery in 2011, initial research was concentrated on pristine MXenes only. However, in the last few years, the MXene family has been expanded with the exploration of novel double MXenes, synthesis of non-Ti MXenes, and heteroatom doping of MXenes. The current review article delivers an exclusive overview of the current research trends on the heteroatom doping of MXenes. The recent advances in heteroatom doping of MXenes (majorly Ti-MXenes) for energy storage/conversion applications including secondary batteries (Li-ion, Li–S, Na–S, Na-ion, K-ion, Zn-ion batteries), supercapacitors, electrocatalysis, etc. are summarized. A brief overview of the defects as well as doping in various 2D materials is included in the manuscript. Various doping strategies of MXenes are outlined. Moreover, the impact of artificial intelligence/machine learning on MXene research is also concisely discussed. Additionally, the advantages of doping on MXenes are discussed in detail. Lastly, the existing challenges and future prospects of doped MXenes are addressed. It is expected that the current review will open new prospects for the fabrication of advanced energy devices through heteroatom doping of MXenes.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100246"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao Wang , Meng Zheng , Yunrui Li , Lidan Zhu , Haoran Li , Qishun Wang , Hui Zhao , Jiawei Zhang , Yuming Dong , Yongfa Zhu
{"title":"Atomically dispersed NiOx cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites","authors":"Yao Wang , Meng Zheng , Yunrui Li , Lidan Zhu , Haoran Li , Qishun Wang , Hui Zhao , Jiawei Zhang , Yuming Dong , Yongfa Zhu","doi":"10.1016/j.apmate.2024.100244","DOIUrl":"10.1016/j.apmate.2024.100244","url":null,"abstract":"<div><div>Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction is of importance for further applications. Herein, the concept of holding atomically dispersed NiO<sub><em>x</em></sub> cluster supported on Pt-based high-index facets (NiO<sub><em>x</em></sub>/Pt) is proposed to build O-bridged Pt–Ni dual sites. Strikingly, the obtained NiO<sub><em>x</em></sub>/Pt dual sites show 4.97 times specific activity higher than that of commercial Pt/C (0.35 mA cm<sup>−2</sup>), as well as outstanding CO-tolerance and durability. The advanced electrochemical in-situ characterizations reveal that the NiO<sub><em>x</em></sub>/Pt can accelerate rapid dehydroxylation and C–C bond-cleavage over the Pt–Ni dual sites. Theoretical calculations disclose that the atomically dispersed NiO<sub><em>x</em></sub> species can lower the adsorption/reaction energy barriers of intermediates. This tactic provides a promising methodology on regulating the surface synergistic sites via engineering atomically dispersed oxide site.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100244"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang
{"title":"Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution","authors":"Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang","doi":"10.1016/j.apmate.2024.100242","DOIUrl":"10.1016/j.apmate.2024.100242","url":null,"abstract":"<div><div>In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]<sup>2</sup><sup>⁻</sup> moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100242"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huange Liao , Kai Huang , Weidong Hou , Huazhang Guo , Cheng Lian , Jiye Zhang , Zheng Liu , Liang Wang
{"title":"Atmosphere engineering of metal-free Te/C3N4 p-n heterojunction for nearly 100% photocatalytic converting CO2 to CO","authors":"Huange Liao , Kai Huang , Weidong Hou , Huazhang Guo , Cheng Lian , Jiye Zhang , Zheng Liu , Liang Wang","doi":"10.1016/j.apmate.2024.100243","DOIUrl":"10.1016/j.apmate.2024.100243","url":null,"abstract":"<div><div>Carbon nitride (CN)-based heterojunction photocatalysts hold promise for efficient carbon dioxide (CO<sub>2</sub>) reduction. However, suboptimal production yields and limited selectivity in CO<sub>2</sub> conversion pose significant barriers to achieving efficient CO<sub>2</sub> conversion. Here, we present the construction of a p-n heterojunction between ultrasmall Te NPs and CN nanosheet using a novel tandem hydrothermal-calcination synthesis strategy. Through ammonia-assisted calcination, ultrasmall Te NPs are grown in-situ on the CN nanosheets’ surface, resulting in the generation of a robust p-n heterojunction. The synthesized heterojunction exhibits increased specific surface area, reinforced visible light absorption, intensive CO<sub>2</sub> adsorption capacity, and efficient charge transfer. The optimum Te/CN-NH<sub>3</sub> demonstrates superior photocatalytic CO<sub>2</sub> reduction activity and durability, with nearly 100 % selectivity for CO and a yield as high as 92.0 μmol g<sup>−1</sup> h<sup>−1</sup>, a fourfold increase compared to pure CN. Experimental and theoretical calculations unravel that the strong built-in electric field of the Te/CN-NH<sub>3</sub> p-n heterojunction accelerates the migration of photogenerated electrons from Te NPs to the N site on CN nanosheets, thereby promoting CO<sub>2</sub> reduction. This study provides a promising material design approach for the construction of high-performance p-n heterojunction photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100243"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaofeng Wu , Freddy E. Oropeza , Shixin Chang , Marcus Einert , Qingyang Wu , Clément Maheu , Julia Gallenberger , Chuanmu Tian , Kangle Lv , Jan P. Hofmann
{"title":"Promoting effect of interfacial hole accumulation on photoelectrochemical water oxidation in BiVO4 and Mo-doped BiVO4","authors":"Xiaofeng Wu , Freddy E. Oropeza , Shixin Chang , Marcus Einert , Qingyang Wu , Clément Maheu , Julia Gallenberger , Chuanmu Tian , Kangle Lv , Jan P. Hofmann","doi":"10.1016/j.apmate.2024.100234","DOIUrl":"10.1016/j.apmate.2024.100234","url":null,"abstract":"<div><div>Hole transfer at the semiconductor-electrolyte interface is a key elementary process in (photo)electrochemical (PEC) water oxidation. However, up to now, a detailed understanding of the hole transfer and the influence of surface hole density on PEC water oxidation kinetics is lacking. In this work, we propose a model for the first time in which the surface accumulated hole density in BiVO<sub>4</sub> and Mo-doped BiVO<sub>4</sub> samples during water oxidation can be acquired via employing illumination-dependent Mott-Schottky measurements. Based on this model, some results are demonstrated as below: (1) Although the surface hole density increases when increasing light intensity and applied potential, the hole transfer rate remains linearly proportional to surface hole density on a log-log scale. (2) Both water oxidation on BiVO<sub>4</sub> and Mo-doped BiVO<sub>4</sub> follow first-order reaction kinetics at low surface hole densities, which is in good agreement with literature. (3) We find that water oxidation active sites in both BiVO<sub>4</sub> and Mo-doped BiVO<sub>4</sub> are very likely to be Bi<sup>5+</sup>, which are produced by photoexcited or/and electro-induced surface holes, rather than VO<sub><em>x</em></sub> species or Mo<sup>6+</sup> due to their insufficient redox potential for water oxidation. (4) Introduction of Mo doping brings about higher OER activity of BiVO<sub>4</sub>, as it suppresses the recombination rate of surface holes and increases formation of Bi<sup>5+</sup>. This surface hole model offers a general approach for the quantification of surface hole density in the field of semiconductor photoelectrocatalysis.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100234"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}