Light-driven H2O2 production over redox-active imine-linked covalent organic frameworks

Songlin Zhang, Jinwen Hu, Wenzhe Shang, Jingya Guo, Xusheng Cheng, Suchan Song, Tianna Liu, Wei Liu, Yantao Shi
{"title":"Light-driven H2O2 production over redox-active imine-linked covalent organic frameworks","authors":"Songlin Zhang,&nbsp;Jinwen Hu,&nbsp;Wenzhe Shang,&nbsp;Jingya Guo,&nbsp;Xusheng Cheng,&nbsp;Suchan Song,&nbsp;Tianna Liu,&nbsp;Wei Liu,&nbsp;Yantao Shi","doi":"10.1016/j.apmate.2024.100179","DOIUrl":null,"url":null,"abstract":"<div><p>Imine-linked covalent organic frameworks (COFs) provide distinctive prospects for promoting photocatalytic H<sub>2</sub>O<sub>2</sub> production, yet the intricate involvement of imine-derived linkages chemistry under light irradiation remains incompletely elucidated. Here, imine-linked COF-LZU1 demonstrates a visible light-driven H<sub>2</sub>O<sub>2</sub> evolution rate of 387 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup>, particularly, negligible dependence on the sacrificial agents. By virtue of electron paramagnetic spectroscopy and solid-state nuclear magnetic resonance, we experimentally tracked the structure evolution and identified its autooxidation to Wurster's salt mimics under the photocatalytic conditioning. This finding coincides with the radical anion ·O<sub>2</sub><sup>−</sup> governed reaction pathway and is further rationalized with additional theoretical calculations. This study provides insights into both photophysical/photochemical aspects over the imine-linkage structure.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 2","pages":"Article 100179"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000101/pdfft?md5=35c3f156dc684b753fcdeddfa4936902&pid=1-s2.0-S2772834X24000101-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imine-linked covalent organic frameworks (COFs) provide distinctive prospects for promoting photocatalytic H2O2 production, yet the intricate involvement of imine-derived linkages chemistry under light irradiation remains incompletely elucidated. Here, imine-linked COF-LZU1 demonstrates a visible light-driven H2O2 evolution rate of 387 ​μmol ​g−1 ​h−1, particularly, negligible dependence on the sacrificial agents. By virtue of electron paramagnetic spectroscopy and solid-state nuclear magnetic resonance, we experimentally tracked the structure evolution and identified its autooxidation to Wurster's salt mimics under the photocatalytic conditioning. This finding coincides with the radical anion ·O2 governed reaction pathway and is further rationalized with additional theoretical calculations. This study provides insights into both photophysical/photochemical aspects over the imine-linkage structure.

Abstract Image

在氧化还原活性亚胺连接共价有机框架上产生光驱动的 H2O2
亚胺连接的共价有机框架(COFs)为促进光催化产生 H2O2 提供了独特的前景,但在光照射下亚胺衍生连接化学的复杂参与仍未完全阐明。在这里,亚胺连接的 COF-LZU1 在可见光驱动下的 H2O2 演化率为 387 μmol g-1 h-1,尤其是对牺牲剂的依赖性可以忽略不计。通过电子顺磁谱和固态核磁共振,我们在实验中跟踪了其结构的演变,并确定了其在光催化条件下自氧化成 Wurster 盐模拟物的过程。这一发现与自由基阴离子 -O2- 主导的反应途径相吻合,并通过更多的理论计算得到了进一步的合理解释。这项研究为亚胺连接结构的光物理/光化学方面提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信