{"title":"Cellular mechanisms of cooperative context-sensitive predictive inference","authors":"Tomáš Marvan , William A. Phillips","doi":"10.1016/j.crneur.2024.100129","DOIUrl":"https://doi.org/10.1016/j.crneur.2024.100129","url":null,"abstract":"<div><p>We argue that prediction success maximization is a basic objective of cognition and cortex, that it is compatible with but distinct from prediction error minimization, that neither objective requires subtractive coding, that there is clear neurobiological evidence for the amplification of predicted signals, and that we are unconvinced by evidence proposed in support of subtractive coding. We outline recent discoveries showing that pyramidal cells on which our cognitive capabilities depend usually transmit information about input to their basal dendrites and amplify that transmission when input to their distal apical dendrites provides a context that agrees with the feedforward basal input in that both are depolarizing, i.e., both are excitatory rather than inhibitory. Though these intracellular discoveries require a level of technical expertise that is beyond the current abilities of most neuroscience labs, they are not controversial and acclaimed as groundbreaking. We note that this cellular cooperative context-sensitivity greatly enhances the cognitive capabilities of the mammalian neocortex, and that much remains to be discovered concerning its evolution, development, and pathology.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000068/pdfft?md5=7f131b904d5d497ab2591177a7d6de61&pid=1-s2.0-S2665945X24000068-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John W. McLean , Mary VanHart , Madilyn P. McWilliams , Charlene B. Farmer , David K. Crossman , Rita M. Cowell , Julie A. Wilson , Scott M. Wilson
{"title":"Analysis of the neuromuscular deficits caused by STAM1 deficiency","authors":"John W. McLean , Mary VanHart , Madilyn P. McWilliams , Charlene B. Farmer , David K. Crossman , Rita M. Cowell , Julie A. Wilson , Scott M. Wilson","doi":"10.1016/j.crneur.2024.100138","DOIUrl":"10.1016/j.crneur.2024.100138","url":null,"abstract":"<div><p>The endosomal sorting complexes required for transport (ESCRT) pathway is composed of a series of protein complexes that are essential for sorting cargo through the endosome. In neurons, the ESCRT pathway is a key mediator of many cellular pathways that regulate neuronal morphogenesis as well as synaptic growth and function. The ESCRT-0 complex, consisting of HGS (hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (signal-transducing adaptor molecule), acts as a gate keeper to this pathway, ultimately determining the fate of the endosomal cargo. We previously showed that a single nucleotide substitution in <em>Hgs</em> results in structural and functional changes in the nervous system of <em>teetering</em> mice. To determine if these changes occurred as a function of HGS's role in the ESCRT pathway and its association with STAM1, we investigated if STAM1 deficiency also leads to a similar impairment of the nervous system. In contrast to <em>teetering</em> mice that die within 5 weeks of age and exhibit reduced body mass, 1-month-old <em>Stam1</em> knockout mice were not visibly different from controls. However, by 3 months of age, STAM1 deficiency caused reduced muscle mass, strength, and motor performance. These changes in motor function did not correlate with either a loss in motor neuron number or abnormal myelination of peripheral nerves. Instead, the motor endplate structure was altered in the <em>Stam1</em> knockout mice by 1 month of age and continued to degenerate over time, correlating with a significant reduction in muscle fiber size and increased expression of the embryonic γ acetylcholine receptor (AChR) subunit at 3 months of age. There was also a significant reduction in the levels of two presynaptic SNARE proteins, VTI1A and VAMP2, in the motor neurons of the <em>Stam1</em> knockout mice. As loss of STAM1 expression replicates many of the structural changes at the motor endplates that we have previously reported with loss of HGS, these results suggest that the HGS/STAM1 complex plays a critical role in maintaining synaptic structure and function in the mammalian nervous system.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"7 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000159/pdfft?md5=46d5a077507b2083cc1a8239a5a26d10&pid=1-s2.0-S2665945X24000159-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the development of human voice perception: Neurobiological mechanisms and pathophysiology","authors":"Emily E. Harford , Lori L. Holt , Taylor J. Abel","doi":"10.1016/j.crneur.2024.100127","DOIUrl":"https://doi.org/10.1016/j.crneur.2024.100127","url":null,"abstract":"<div><p>The human voice is a critical stimulus for the auditory system that promotes social connection, informs the listener about identity and emotion, and acts as the carrier for spoken language. Research on voice processing in adults has informed our understanding of the unique status of the human voice in the mature auditory cortex and provided potential explanations for mechanisms that underly voice selectivity and identity processing. There is evidence that voice perception undergoes developmental change starting in infancy and extending through early adolescence. While even young infants recognize the voice of their mother, there is an apparent protracted course of development to reach adult-like selectivity for human voice over other sound categories and recognition of other talkers by voice. Gaps in the literature do not allow for an exact mapping of this trajectory or an adequate description of how voice processing and its neural underpinnings abilities evolve. This review provides a comprehensive account of developmental voice processing research published to date and discusses how this evidence fits with and contributes to current theoretical models proposed in the adult literature. We discuss how factors such as cognitive development, neural plasticity, perceptual narrowing, and language acquisition may contribute to the development of voice processing and its investigation in children. We also review evidence of voice processing abilities in premature birth, autism spectrum disorder, and phonagnosia to examine where and how deviations from the typical trajectory of development may manifest.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000044/pdfft?md5=97cbab561c4db0a0bc469bfbd3a61c9a&pid=1-s2.0-S2665945X24000044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sparse code for natural sound context in auditory cortex","authors":"Mateo López Espejo , Stephen V. David","doi":"10.1016/j.crneur.2023.100118","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100118","url":null,"abstract":"<div><p>Accurate sound perception can require integrating information over hundreds of milliseconds or even seconds. Spectro-temporal models of sound coding by single neurons in auditory cortex indicate that the majority of sound-evoked activity can be attributed to stimuli with a few tens of milliseconds. It remains uncertain how the auditory system integrates information about sensory context on a longer timescale. Here we characterized long-lasting contextual effects in auditory cortex (AC) using a diverse set of natural sound stimuli. We measured context effects as the difference in a neuron's response to a single probe sound following two different context sounds. Many AC neurons showed context effects lasting longer than the temporal window of a traditional spectro-temporal receptive field. The duration and magnitude of context effects varied substantially across neurons and stimuli. This diversity of context effects formed a sparse code across the neural population that encoded a wider range of contexts than any constituent neuron. Encoding model analysis indicates that context effects can be explained by activity in the local neural population, suggesting that recurrent local circuits support a long-lasting representation of sensory context in auditory cortex.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100118"},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X23000463/pdfft?md5=f9777eb63656409ff391b5439222d19b&pid=1-s2.0-S2665945X23000463-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138549106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavioral optogenetics in nonhuman primates; a psychological perspective.","authors":"Arash Afraz","doi":"10.1016/j.crneur.2023.100101","DOIUrl":"10.1016/j.crneur.2023.100101","url":null,"abstract":"<p><p>Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the \"cortical perturbation detection\" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.</p>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"1 1","pages":"100101"},"PeriodicalIF":0.0,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54048828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristine Marie Yde Ohki , Natalie Monet Walter , Michelle Rickli , José Maria Salazar Campos , Anna Maria Werling , Christian Döring , Susanne Walitza , Edna Grünblatt
{"title":"Protocol for a Wnt reporter assay to measure its activity in human neural stem cells derived from induced pluripotent stem cells","authors":"Cristine Marie Yde Ohki , Natalie Monet Walter , Michelle Rickli , José Maria Salazar Campos , Anna Maria Werling , Christian Döring , Susanne Walitza , Edna Grünblatt","doi":"10.1016/j.crneur.2023.100095","DOIUrl":"10.1016/j.crneur.2023.100095","url":null,"abstract":"<div><p>The canonical Wnt signaling is an essential pathway that regulates cellular proliferation, maturation, and differentiation during neurodevelopment and maintenance of adult tissue homeostasis. This pathway has been implicated with the pathophysiology of neuropsychiatric disorders and was associated with cognitive processes, such as learning and memory. However, the molecular investigation of the Wnt signaling in functional human neural cell lines might be challenging since brain biopsies are not possible and animal models may not represent the polygenic profile of some neurological and neurodevelopmental disorders. In this context, using induced pluripotent stem cells (iPSCs) has become a powerful tool to model disorders that affect the Central Nervous System (CNS) <em>in vitro</em>, by maintaining patients’ genetic backgrounds. In this method paper, we report the development of a virus-free Wnt reporter assay in neural stem cells (NSCs) derived from human iPSCs from two healthy individuals, by using a vector containing a reporter gene (<em>luc2P</em>) under the control of a TCF/LEF (T-cell factor/lymphoid enhancer factor) responsive element. Dose-response curve analysis from this luciferase-based method might be useful when testing the activity of the Wnt signaling pathway after agonists (e.g. Wnt3a) or antagonists (e.g. DKK1) administration, comparing activity between cases and controls in distinct disorders. Using such a reporter assay method may help to elucidate whether neurological or neurodevelopmental mental disorders show alterations in this pathway, and testing whether targeted treatment may reverse these. Therefore, our established assay aims to help researchers on the functional and molecular investigation of the Wnt pathway in patient-specific cell types comprising several neuropsychiatric disorders.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9808372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Are there disciplinary boundaries in the comparative study of primate cognition?","authors":"Héctor M. Manrique , Juan J. Canales","doi":"10.1016/j.crneur.2023.100088","DOIUrl":"10.1016/j.crneur.2023.100088","url":null,"abstract":"<div><p>A view continues to gain momentum that regards investigation of the cognition of great apes in captive settings as affording us a model for human cognitive evolution. Researchers from disciplines such as comparative psychology, anthropology, and even archaeology, seem eager to put their theories to the test by using great apes as their chosen experimental model. Questions addressed currently by comparative psychologists have long been the object of attention by neurophysiologists, psychobiologists and neuroscientists, who, however, often use rodents and monkeys as the species of choice. Whereas comparative psychology has been influenced greatly by ethology, much neuroscience has developed against a background of physiology and medicine. This separation of the intellectual contexts wherein they have arisen and flourished has impeded the development of fluid interaction between comparative psychologists and researchers in the other disciplines. We feel that it would be beneficial for comparative psychologists and neuroscientists to combine research endeavours far more often, in order to address common questions of interest related to cognition. We regard interdisciplinary cross-pollination to be particularly desirable, even if many comparative psychologists lack deep expertise about the workings of the brain, and even if many neuroscientists lack expert knowledge about the behaviour of different species. Furthermore, we believe that anthropology, archaeology, human evolutionary studies, and related disciplines, may well provide us with significant contextual knowledge about the physical and temporal background to the evolution in humans of specific cognitive skills. To that end, we urge researchers to dismantle methodological, conceptual and historical disciplinary boundaries, in order to strengthen cross-disciplinary cooperation in order to broaden and deepen our insights into the cognition of nonhuman and human primates.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/0a/main.PMC10313864.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10123130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rodriguez-Duboc , M. Basille-Dugay , A. Debonne , M.-A. Rivière , D. Vaudry , D. Burel
{"title":"Apnea of prematurity induces short and long-term development-related transcriptional changes in the murine cerebellum","authors":"A. Rodriguez-Duboc , M. Basille-Dugay , A. Debonne , M.-A. Rivière , D. Vaudry , D. Burel","doi":"10.1016/j.crneur.2023.100113","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100113","url":null,"abstract":"<div><p>Apnea of prematurity (AOP) affects more than 50% of preterm infants and leads to perinatal intermittent hypoxia (IH) which is a major cause of morbimortality worldwide. At birth, the human cerebellar cortex is still immature, making it vulnerable to perinatal events. Additionally, studies have shown a correlation between cerebellar functions and the deficits observed in children who have experienced AOP. Yet, the cerebellar alterations underpinning this link remain poorly understood. To gain insight into the involvement of the cerebellum in perinatal hypoxia-related consequences, we developed a mouse model of AOP. Our previous research has revealed that IH induces oxidative stress in the developing cerebellum, as evidenced by the over-expression of genes involved in reactive oxygen species production and the under-expression of genes encoding antioxidant enzymes. These changes suggest a failure of the defense system against oxidative stress and could be responsible for neuronal death in the cerebellum.</p><p>Building upon these findings, we conducted a transcriptomic study of the genes involved in the processes that occur during cerebellar development. Using real-time PCR, we analyzed the expression of these genes at different developmental stages and in various cell types. This enabled us to pinpoint a timeframe of vulnerability at P8, which represents the age with the highest number of downregulated genes in the cerebellum. Furthermore, we discovered that our IH protocol affects several molecular pathways, including proliferation, migration, and differentiation. This indicates that IH can impact the development of different cell types, potentially contributing to the histological and behavioral deficits observed in this model. Overall, our data strongly suggest that the cerebellum is highly sensitive to IH, and provide valuable insights into the cellular and molecular mechanisms underlying AOP. In the long term, these findings may contribute to the identification of novel therapeutic targets for improving the clinical management of this prevalent pathology.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X23000414/pdfft?md5=3fa9816419f8784a328c4394156b0794&pid=1-s2.0-S2665945X23000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91989989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahriar SheikhBahaei , Marissa Millwater , Gerald A. Maguire
{"title":"Stuttering as a spectrum disorder: A hypothesis","authors":"Shahriar SheikhBahaei , Marissa Millwater , Gerald A. Maguire","doi":"10.1016/j.crneur.2023.100116","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100116","url":null,"abstract":"<div><p>Childhood-onset fluency disorder, commonly referred to as stuttering, affects over 70 million adults worldwide. While stuttering predominantly initiates during childhood and is more prevalent in males, it presents consistent symptoms during conversational speech. Despite these common clinical manifestations, evidence suggests that stuttering, may arise from different etiologies, emphasizing the need for personalized therapy approaches. Current research models often regard the stuttering population as a singular, homogenous group, potentially overlooking the inherent heterogeneity. This perspective consolidates both historical and recent observations to emphasize that stuttering is a heterogeneous condition with diverse causes. As such, it is crucial that both therapeutic research and clinical practices consider the potential for varied etiologies leading to stuttering. Recognizing stuttering as a spectrum disorder embraces its inherent variability, allowing for a more nuanced categorization of individuals based on the underlying causes. This perspective aligns with the principles of precision medicine, advocating for tailored treatments for distinct subgroups of people who stutter, ultimately leading to personalized therapeutic approaches.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X2300044X/pdfft?md5=e8883614b16b4280c536d3e0f0345e8b&pid=1-s2.0-S2665945X2300044X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91989990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camila Saggioro de Figueiredo , Ícaro Raony , Simone Vidal Medina , Eliezer de Mello Silva , Aline Araujo dos Santos , Elizabeth Giestal-de-Araujo
{"title":"Insulin-like growth factor-1 stimulates retinal cell proliferation via activation of multiple signaling pathways","authors":"Camila Saggioro de Figueiredo , Ícaro Raony , Simone Vidal Medina , Eliezer de Mello Silva , Aline Araujo dos Santos , Elizabeth Giestal-de-Araujo","doi":"10.1016/j.crneur.2022.100068","DOIUrl":"10.1016/j.crneur.2022.100068","url":null,"abstract":"<div><p>Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/ee/main.PMC9800307.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}