{"title":"Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice","authors":"Akansh Goal, Khadga Raj, Shamsher Singh, Rimpi Arora","doi":"10.1016/j.crneur.2023.100122","DOIUrl":"10.1016/j.crneur.2023.100122","url":null,"abstract":"<div><p>Alzheimer's disease (AD) is a neurodegenerative disease that affects the neurons in the hippocampus, resulting in cognitive and memory impairment. The most prominent clinical characteristics of AD are the production of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuroinflammation in neurons. It has been proven that embelin (Emb) possesses antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, we assessed the therapeutic potential of Emb in Benzo [α]pyrene (BaP)-induced cognitive impairment in experimental mice. BaP (5 mg/kg, i. p) was given to mice daily for 28 days, and Emb (2.5, 5, and 10 mg/kg, i. p) was given from 14 to 28 days of a protocol. In addition, locomotor activity was evaluated using open-field and spatial working, and non-spatial memory was evaluated using novel object recognition tasks (NORT), Morris water maze (MWM), and Y- maze. At the end of the study, the animal tissue homogenate was used to check biochemicals, neuroinflammation, and neurotransmitter changes. BaP-treated mice showed a significant decline in locomotor activity, learning and memory deficits and augmented oxidative stress (lipid peroxidation, nitrite, and GSH). Further, BaP promoted the release of inflammatory tissue markers, decreased acetylcholine, dopamine, GABA, serotonin, and norepinephrine, and increased glutamate concentration. However, treatment with Emb at dose-dependently prevented biochemical changes, improved antioxidant levels, reduced neuroinflammation, restored neurotransmitter concentration, and inhibited the NF-κB pathway. The current study's finding suggested that Emb improved cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms and inhibition of acetylcholinesterase (AChE) enzyme activities and Aβ-42 accumulation.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X23000505/pdfft?md5=04467b5e8a8dd40ebf8dd9b01aabac44&pid=1-s2.0-S2665945X23000505-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decrease in phase slip rates and phase cone structures during seizure evolution and epileptogenic activities derived from microgrid ECoG data","authors":"Ceon Ramon , Alexander Doud , Mark D. Holmes","doi":"10.1016/j.crneur.2024.100126","DOIUrl":"10.1016/j.crneur.2024.100126","url":null,"abstract":"<div><p>Sudden phase changes are related to cortical phase transitions, which likely change in frequency and spatial distribution as epileptogenic activity evolves. A 100 s long section of micro-ECoG data obtained before and during a seizure was selected and analyzed. In addition, nine other short-duration epileptic events were also examined. The data was collected at 420 Hz, imported into MATLAB, downsampled to 200 Hz, and filtered in the 1–50 Hz band. The Hilbert transform was applied to compute the analytic phase, which was then unwrapped, and detrended to look for sudden phase changes. The phase slip rate (counts/s) and its acceleration (counts/s<sup>2</sup>) were computed with a stepping window of 1-s duration and with a step size of 5 ms. The analysis was performed for theta (3–7 Hz), alpha (7–12 Hz), and beta (12–30 Hz) bands. The phase slip rate on all electrodes in the theta band decreased while it increased for the alpha and beta bands during the seizure period. Similar patterns were observed for isolated epileptogenic events. Spatiotemporal contour plots of the phase slip rates were also constructed using a montage layout of 8 × 8 electrode positions. These plots exhibited dynamic and oscillatory formation of phase cone-like structures which were higher in the theta band and lower in the alpha and beta bands during the seizure period and epileptogenic events. These results indicate that the formation of phase cones might be an excellent biomarker to study the evolution of a seizure and also the cortical dynamics of isolated epileptogenic events.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000032/pdfft?md5=298bae3fdfba77f22697ec3bc3b8391d&pid=1-s2.0-S2665945X24000032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chirag P. Talati , Jonathan W. Lee , Silu Lu , Norma B. Ojeda , Varsha Prakash , Nilesh Dankhara , Tanner C. Nielson , Sara P. Sandifer , Gene L. Bidwell III , Yi Pang , Lir-Wan Fan , Abhay J. Bhatt
{"title":"Intranasal insulin attenuates hypoxia-ischemia-induced short-term sensorimotor behavioral disturbances, neuronal apoptosis, and brain damage in neonatal rats","authors":"Chirag P. Talati , Jonathan W. Lee , Silu Lu , Norma B. Ojeda , Varsha Prakash , Nilesh Dankhara , Tanner C. Nielson , Sara P. Sandifer , Gene L. Bidwell III , Yi Pang , Lir-Wan Fan , Abhay J. Bhatt","doi":"10.1016/j.crneur.2023.100123","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100123","url":null,"abstract":"<div><p>There is a significant need for additional therapy to improve outcomes for newborns with acute Hypoxic-ischemic (HI) encephalopathy (HIE). New evidence suggests that insulin could be neuroprotective. This study aimed to investigate whether intranasal insulin attenuates HI-induced brain damage and neurobehavioral dysfunction in neonatal rats. Postnatal day 10 (P10), Sprague-Dawley rat pups were randomly divided into Sham + Vehicle, Sham + Insulin, HI + Vehicle, and HI + Insulin groups with equal male-to-female ratios. Pups either had HI by permanent ligation of the right common carotid artery followed by 90 min of hypoxia (8% O2) or sham surgery followed by room air exposure. Immediately after HI or Sham, pups were given fluorescence-tagged insulin (Alex-546-insulin)/vehicle, human insulin (25 μg), or vehicle in each nare under anesthesia. Shortly after administration, widespread Alex-546-insulin-binding cells were detected in the brain, primarily co-localized with neuronal nuclei-positive neurons on double-immunostaining. In the hippocampus, phospho-Akt was activated in a subset of Alex-546-insulin double-labeled cells, suggesting activation of the Akt/PI3K pathway in these neurons. Intranasal insulin (InInsulin) reduced HI-induced sensorimotor behavioral disturbances at P11. InInsulin prevented HI-induced increased Fluoro-Jade C+ degenerated neurons, cleaved caspase 3+ neurons, and volume loss in the ipsilateral brain at P11. There was no sex-specific response to HI or insulin. The findings confirm that intranasal insulin provides neuroprotection against HI brain injury in P10 rats associated with activation of intracellular cell survival signaling. If further pre-clinical research shows long-term benefits, intranasal insulin has the potential to be a promising non-invasive therapy to improve outcomes for newborns with HIE.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X23000517/pdfft?md5=e55477a14056d7c04a5102090ef21a73&pid=1-s2.0-S2665945X23000517-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139100125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel W. Keefe , David T. Christianson , Greyson W. Davis , Hiroyuki Oya , Matthew A. Howard III , Christopher I. Petkov , Fatima Toor
{"title":"Modeling for neurosurgical laser interstitial thermal therapy with and without intracranial recording electrodes","authors":"Daniel W. Keefe , David T. Christianson , Greyson W. Davis , Hiroyuki Oya , Matthew A. Howard III , Christopher I. Petkov , Fatima Toor","doi":"10.1016/j.crneur.2024.100139","DOIUrl":"10.1016/j.crneur.2024.100139","url":null,"abstract":"<div><p>Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"7 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000160/pdfft?md5=b0aa36c26830c2f3500b6d7253f7ad15&pid=1-s2.0-S2665945X24000160-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontal P300 asymmetry and congruence judgment: Retroactive switching is impaired during school day mornings in female adolescents","authors":"Gabriel E. Byczynski , Amedeo D'Angiulli","doi":"10.1016/j.crneur.2024.100128","DOIUrl":"https://doi.org/10.1016/j.crneur.2024.100128","url":null,"abstract":"<div><p>Investigating frontal EEG asymmetry as a possible biomarker of cognitive control abilities is especially important in ecological contexts such as school and work. We used a novel approach combining judgment performance and hemispheric frontal event-related potential (ERP) P300 asymmetry (fP3As) to evaluate aspects of cognitive control (i.e., repetition and switching) in adolescent females over a two-week ordinary school period. While undergoing electroencephalographic recording, students performed a word-colour “Stroop-like” congruence judgment task during morning and afternoon sessions, on Mondays and Wednesdays. Proportion of incongruence and congruence trials was 75% and 25%, respectively. ERP analysis revealed larger “novelty” right hemispheric fP3As amplitude for infrequent congruence but equivalent or significantly smaller than left hemispheric fP3As amplitude for frequent incongruence. RTs increased with extent of right fP3As shift. Behaviorally, repeat trial pairs (i.e., congruent followed by congruent, incongruent followed by incongruent) generally did not differ by time or day and were associated with near-ceiling accuracy. In contrast, switch trial pairs (i.e., congruent followed by incongruent, incongruent followed by congruent) in the afternoon were slower and associated with lower accuracy at the expected 75% criterion rate (i.e., judging incongruence by default), dropping significantly below 75% in the mornings. Crucially, compared to afternoon, morning fP3As patterns did not change adaptively with switch trial pairs. Although retroactive switching during congruence judgment was affected at all testing times, we conclude it was most impaired in the mornings of both early and mid school weeks, supporting misalignment between adolescent circadian cycle and school start time. We discuss some implications for optimal learning of adolescents at school.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000056/pdfft?md5=180e96708b7e20b2e258a28bf0db7083&pid=1-s2.0-S2665945X24000056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Jelinek , Marie Johne , Mesbah Alam , Joachim K. Krauss , Andrej Kral , Kerstin Schwabe
{"title":"Hearing loss in juvenile rats leads to excessive play fighting and hyperactivity, mild cognitive deficits and altered neuronal activity in the prefrontal cortex","authors":"Jonas Jelinek , Marie Johne , Mesbah Alam , Joachim K. Krauss , Andrej Kral , Kerstin Schwabe","doi":"10.1016/j.crneur.2024.100124","DOIUrl":"https://doi.org/10.1016/j.crneur.2024.100124","url":null,"abstract":"<div><h3>Background</h3><p>In children, hearing loss has been associated with hyperactivity, disturbed social interaction, and risk of cognitive disturbances. Mechanistic explanations of these relations sometimes involve language. To investigate the effect of hearing loss on behavioral deficits in the absence of language, we tested the impact of hearing loss in juvenile rats on motor, social, and cognitive behavior and on physiology of prefrontal cortex.</p></div><div><h3>Methods</h3><p>Hearing loss was induced in juvenile (postnatal day 14) male Sprague-Dawley rats by intracochlear injection of neomycin under general anesthesia. Sham-operated and non-operated hearing rats served as controls. One week after surgery auditory brainstem response (ABR) measurements verified hearing loss or intact hearing in sham-operated and non-operated controls. All rats were then tested for locomotor activity (open field), coordination (Rotarod), and for social interaction during development in weeks 1, 2, 4, 8, 16, and 24 after surgery. From week 8 on, rats were trained and tested for spatial learning and memory (4-arm baited 8-arm radial maze test). In a final setting, neuronal activity was recorded in the medial prefrontal cortex (mPFC).</p></div><div><h3>Results</h3><p>In the open field deafened rats moved faster and covered more distance than sham-operated and non-operated controls from week 8 on (both p < 0.05). Deafened rats showed significantly more play fighting during development (p < 0.05), whereas other aspects of social interaction, such as following, were not affected. Learning of the radial maze test was not impaired in deafened rats (p > 0.05), but rats used less next-arm entries than other groups indicating impaired concept learning (p < 0.05). In the mPFC neuronal firing rate was reduced and enhanced irregular firing was observed. Moreover, oscillatory activity was altered, both within the mPFC and in coherence of mPFC with the somatosensory cortex (p < 0.05).</p></div><div><h3>Conclusions</h3><p>Hearing loss in juvenile rats leads to hyperactive behavior and pronounced play-fighting during development, suggesting a causal relationship between hearing loss and cognitive development. Altered neuronal activities in the mPFC after hearing loss support such effects on neuronal networks outside the central auditory system. This animal model provides evidence of developmental consequences of juvenile hearing loss on prefrontal cortex in absence of language as potential confounding factor.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000019/pdfft?md5=6960fd7463c5b42637a037d88645219c&pid=1-s2.0-S2665945X24000019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139714720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Ran Li , Maxime Lévesque , Siyan Wang , Maria-Isabel Carreño-Muñoz , Graziella Di Cristo , Massimo Avoli
{"title":"Ictal activity is sustained by the estrogen receptor β during the estrous cycle","authors":"Fei Ran Li , Maxime Lévesque , Siyan Wang , Maria-Isabel Carreño-Muñoz , Graziella Di Cristo , Massimo Avoli","doi":"10.1016/j.crneur.2024.100131","DOIUrl":"10.1016/j.crneur.2024.100131","url":null,"abstract":"<div><p>Catamenial epilepsy, defined as a periodicity of seizure exacerbation during the menstrual cycle, affects up to 70 % of epileptic women. Seizures in these patients are often non-responsive to medication; however, our understanding of the relation between menstrual cycle and seizure generation (i.e. ictogenesis) remains limited. We employed here field potential recordings in the <em>in vitro</em> 4-aminopyridine model of epileptiform synchronization in female mice (P60–P130) and found that: (i) the estrous phase favors ictal activity in the entorhinal cortex; (ii) these ictal discharges display an onset pattern characterised by the presence of chirps that are thought to mirror synchronous interneuron firing; and (iii) blocking estrogen receptor β-mediated signaling reduces ictal discharge duration. Our findings indicate that the duration of 4AP-induced ictal discharges, <em>in vitro</em>, increases during the estrous phase, which corresponds to the human peri-ovulatory period. We propose that these effects are caused by the presumptive enhancement of interneuron excitability due to increased estrogen receptor β-mediated signaling.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000081/pdfft?md5=c2527a6cb3b0e41c16c4841ab60125a6&pid=1-s2.0-S2665945X24000081-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Porras , Hayden Olliviere , Sean P. Bradley , Alice M. Graham , Yogita Chudasama , Tracey A. Rouault
{"title":"Ablation of Iron Regulatory Protein 2 produces a neurological disorder characterized by motor, somatosensory, and executive dysfunction in mice","authors":"Christina Porras , Hayden Olliviere , Sean P. Bradley , Alice M. Graham , Yogita Chudasama , Tracey A. Rouault","doi":"10.1016/j.crneur.2024.100136","DOIUrl":"10.1016/j.crneur.2024.100136","url":null,"abstract":"<div><p>Iron is an important cofactor for many proteins and is used to create Fe-S clusters and heme prosthetic groups that enzymes use to catalyze enzymatic reactions. Proteins involved in the import, export, and sequestration of iron are regulated by Iron Regulatory Proteins (IRPs). Recently, a patient with bi-allelic loss of function mutations in IREB2 leading to the absence of IRP2 protein was discovered. The patient failed to achieve developmental milestones and was diagnosed with dystonic cerebral palsy, epilepsy, microcytic hypochromic anemia, and frontal lobe atrophy. Several more IREB2 deficient patients subsequently identified manifested similar neurological problems. To better understand the manifestations of this novel neurological disease, we subjected an Irp2-null mouse model to extensive behavioral testing. Irp2-null mice had a significant motor deficit demonstrated by reduced performance on rotarod and hanging wire tests. Somatosensory function was also compromised in hot and cold plate assays. Their spatial search strategy was impaired in the Barnes maze and they exhibited a difficulty in flexibly adapting their response in the operant touchscreen reversal learning task. The latter is a cognitive behavior known to require an intact prefrontal cortex. These results suggest that loss of Irp2 in mice causes motor and behavioral deficits that faithfully reflect the IREB2 patient's neurodegenerative disorder.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"7 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000135/pdfft?md5=b6f5d363d8ae486e87477cbbc1eec1f3&pid=1-s2.0-S2665945X24000135-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nine Kompier , Marcus Semtner , Sophie Walter , Natali Kakabadze , Christian Steinhäuser , Christiane Nolte , Helmut Kettenmann
{"title":"Membrane properties and coupling of macroglia in the optic nerve","authors":"Nine Kompier , Marcus Semtner , Sophie Walter , Natali Kakabadze , Christian Steinhäuser , Christiane Nolte , Helmut Kettenmann","doi":"10.1016/j.crneur.2024.100137","DOIUrl":"10.1016/j.crneur.2024.100137","url":null,"abstract":"<div><p>We established a longitudinal acute slice preparation of transgenic mouse optic nerve to characterize membrane properties and coupling of glial cells by patch-clamp and dye-filling, complemented by immunohistochemistry. Unlike in cortex or hippocampus, the majority of EGFP + cells in optic nerve of the hGFAP-EGFP transgenic mouse, a tool to identify astrocytes, were characterized by time and voltage dependent K<sup>+</sup>-currents including A-type K<sup>+</sup>-currents, properties previously described for NG2 glia. Indeed, the majority of transgene expressing cells in optic nerve were immunopositive for NG2 proteoglycan, whereas only a minority show GFAP immunoreactivity. Similar physiological properties were seen in YFP + cells from NG2-YFP transgenic mice, indicating that in optic nerve the transgene of hGFAP-EGFP animals is expressed by NG2 glia instead of astrocytes. Using Cx43kiECFP transgenic mice as another astrocyte-indicator revealed that astrocytes had passive membrane currents. Dye-filling showed that hGFAP-EGFP+ cells in optic nerve were coupled to none or few neighboring cells while hGFAP-EGFP+ cells in the cortex form large networks. Similarly, dye-filling of NG2-YFP+ and Cx43-CFP+ cells in optic nerve revealed small networks. Our work shows that identification of astrocytes in optic nerve requires distinct approaches, that the cells express membrane current patterns distinct from cortex and that they form small networks.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"7 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000147/pdfft?md5=de98663488bdd8fbed59736f14a8806e&pid=1-s2.0-S2665945X24000147-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xindong Song (宋欣东) , Yueqi Guo (郭月琪) , Chenggang Chen , Jong Hoon Lee , Xiaoqin Wang
{"title":"Tonotopic organization of auditory cortex in awake marmosets revealed by multi-modal wide-field optical imaging","authors":"Xindong Song (宋欣东) , Yueqi Guo (郭月琪) , Chenggang Chen , Jong Hoon Lee , Xiaoqin Wang","doi":"10.1016/j.crneur.2024.100132","DOIUrl":"https://doi.org/10.1016/j.crneur.2024.100132","url":null,"abstract":"<div><p>Tonotopic organization of the auditory cortex has been extensively studied in many mammalian species using various methodologies and physiological preparations. Tonotopy mapping in primates, however, is more limited due to constraints such as cortical folding, use of anesthetized subjects, and mapping methodology. Here we applied a combination of through-skull and through-window intrinsic optical signal imaging, wide-field calcium imaging, and neural probe recording techniques in awake marmosets (<em>Callithrix jacchus</em>), a New World monkey with most of its auditory cortex located on a flat brain surface. Coarse tonotopic gradients, including a recently described rostral-temporal (RT) to parabelt gradient, were revealed by the through-skull imaging of intrinsic optical signals and were subsequently validated by single-unit recording. Furthermore, these tonotopic gradients were observed with more detail through chronically implanted cranial windows with additional verifications on the experimental design. Moreover, the tonotopy mapped by the intrinsic-signal imaging methods was verified by wide-field calcium imaging in an AAV-GCaMP labeled subject. After these validations and with further effort to expand the field of view more rostrally in both windowed and through-skull subjects, an additional putative tonotopic gradient was observed more rostrally to the area RT, which has not been previously described by the standard model of tonotopic organization of the primate auditory cortex. Together, these results provide the most comprehensive data of tonotopy mapping in an awake primate species with unprecedented coverage and details in the rostral proportion and support a caudal-rostrally arranged mesoscale organization of at least three repeats of functional gradients in the primate auditory cortex, similar to the ventral stream of primate visual cortex.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"6 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X24000093/pdfft?md5=fea4da7e18db6dc2892c92b8ad81bd78&pid=1-s2.0-S2665945X24000093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}