Advanced Photonics Research最新文献

筛选
英文 中文
All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices 具有微oring 晶格的全带平面浮凸拓扑光子绝缘体
IF 3.7
Advanced Photonics Research Pub Date : 2024-08-04 DOI: 10.1002/adpr.202470021
Hanfa Song, Vien Van
{"title":"All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices","authors":"Hanfa Song,&nbsp;Vien Van","doi":"10.1002/adpr.202470021","DOIUrl":"https://doi.org/10.1002/adpr.202470021","url":null,"abstract":"<p><b>Topological Photonic Insulators</b>\u0000 </p><p>In article number 2400023, Vien Van and Hanfa Song present the design and realization of (2 + 1)D topological photonic insulators hosting all flat bands, which exhibit novel properties such as anomalous Floquet insulator phase, ultra-wide edge mode continuum, super robustness to disorder, and photon caging in compact localized bulk states. These lattices have broadband applications in topologically-protected quantum photonics and programmable photonic circuits.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of the Internal Quantum Efficiency of III-Nitride Blue Micro-Light-Emitting Diodes by the Hole Accelerator at the Low Current Density 低电流密度下利用空穴加速器提高 III 氮化物蓝色微型发光二极管的内部量子效率
IF 3.7
Advanced Photonics Research Pub Date : 2024-08-04 DOI: 10.1002/adpr.202300262
An-Chi Wei, Sheng-Hsiang Wang, Jyh-Rou Sze, Quoc-Hung Pham
{"title":"Improvement of the Internal Quantum Efficiency of III-Nitride Blue Micro-Light-Emitting Diodes by the Hole Accelerator at the Low Current Density","authors":"An-Chi Wei,&nbsp;Sheng-Hsiang Wang,&nbsp;Jyh-Rou Sze,&nbsp;Quoc-Hung Pham","doi":"10.1002/adpr.202300262","DOIUrl":"https://doi.org/10.1002/adpr.202300262","url":null,"abstract":"<p>The hole accelerator is proven to benefit the hole injection for traditional light-emitting diodes (LEDs) because the induced electric field provides the holes with more kinetic energy to pass through the electron-blocking layer, enhancing the hole injection efficiency. Herein, the effect of the hole accelerator (HA) layer on the micro-LEDs by modeling the characteristics of the devices with a current density of lower than 10 A cm<sup>−2</sup> is investigated. The simulation results show that the appended HA layer brings a knot of the electric field in the HA layer, leading to higher internal quantum efficiency (IQE) than the device without HA under the low current density. The thickness and composition of HA, the quantum number, and the material of quantum barrier are also simulated and analyzed. The simulated radiative, Shockley–Read–Hall, and Auger recombination rates show that the IQE of the micro-LED with the HA layer is higher than that without the HA layer under the current density of lower than 10 A cm<sup>−2</sup>.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification 光诱导结构改性导致石墨微粒对红外光的上转换
IF 3.7
Advanced Photonics Research Pub Date : 2024-08-04 DOI: 10.1002/adpr.202470023
Rohin Sharma, Nishma Bhattarai, Rijan Maharjan, Lilia M. Woods, Nirajan Ojha, Ashim Dhakal
{"title":"Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification","authors":"Rohin Sharma,&nbsp;Nishma Bhattarai,&nbsp;Rijan Maharjan,&nbsp;Lilia M. Woods,&nbsp;Nirajan Ojha,&nbsp;Ashim Dhakal","doi":"10.1002/adpr.202470023","DOIUrl":"https://doi.org/10.1002/adpr.202470023","url":null,"abstract":"<p><b>Photoinduced Structural Modification</b>\u0000 </p><p>In article number 2300326, Ashim Dhakal and co-workers show that photo-induced metastable modification of electronic structure in graphite allows for multiphoton processes that can up-convert an O-band infrared excitation to visible-NIR band in graphite powder. Theoretically, this process can upconvert an infrared light near the wavelength of 3 μm to VIS-NIR wavelengths. It opens exciting new avenues for applications in visible light generation and low-noise imaging using infrared light excitation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Fabrication of 3D-Printed Lab-On-A-Chip Devices for Fiber-Based Optical Chromatography and Sorting 设计和制造用于光纤色谱和分拣的三维打印片上实验室设备
IF 3.7
Advanced Photonics Research Pub Date : 2024-08-01 DOI: 10.1002/adpr.202400011
Ole Milark, Marc Buttkewitz, Emil Agócs, Beate Legutko, Benjamin Bergmann, Janina Bahnemann, Alexander Heisterkamp, Maria Leilani Torres-Mapa
{"title":"Design and Fabrication of 3D-Printed Lab-On-A-Chip Devices for Fiber-Based Optical Chromatography and Sorting","authors":"Ole Milark,&nbsp;Marc Buttkewitz,&nbsp;Emil Agócs,&nbsp;Beate Legutko,&nbsp;Benjamin Bergmann,&nbsp;Janina Bahnemann,&nbsp;Alexander Heisterkamp,&nbsp;Maria Leilani Torres-Mapa","doi":"10.1002/adpr.202400011","DOIUrl":"https://doi.org/10.1002/adpr.202400011","url":null,"abstract":"<p>Microfluidic lab-on-a-chip (LOC) devices have become essential tools for multitudes of applications in various research fields. 3D printing of microfluidic LOC devices offers many advantages over more traditional manufacturing processes, including rapid prototyping and single-step fabrication of complex 3D structures. In this work, 3D-printed microfluidic devices are designed and fabricated for optical chromatography and sorting. Optical chromatography is performed by inserting a single-mode optical fiber into the device creating a counter-propagating laser beam to the fluid flow. Particles are separated depending on refractive index and size. To demonstrate optical sorting, a cross-type sorter 3D-printed microfluidic device is fabricated that directs the laser beam perpendicular to the flow direction. Design features such as a sloping channel and a channel configuration for 3D hydrodynamic focusing (to aid in controlled sample flow and particle position) help to optimize sorting performance. Stable optofluidic trapping and sorting are successfully achieved using the fabricated microfluidic devices. These results highlight the tremendous potential of 3D printing of microfluidic LOC devices for applications aimed at the optofluidic manipulation of micron-sized particles.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral Emission from Optical Metasurfaces and Metacavities 光学元表面和元腔的手性发射
IF 3.7
Advanced Photonics Research Pub Date : 2024-07-22 DOI: 10.1002/adpr.202400060
Jungho Han, Heejoo Jang, Yeonsoo Lim, Seong S. Kim, Jeheon Lee, Young Chul Jun
{"title":"Chiral Emission from Optical Metasurfaces and Metacavities","authors":"Jungho Han, Heejoo Jang, Yeonsoo Lim, Seong S. Kim, Jeheon Lee, Young Chul Jun","doi":"10.1002/adpr.202400060","DOIUrl":"https://doi.org/10.1002/adpr.202400060","url":null,"abstract":"Chiral emission exhibiting a large degree of circular polarization (DCP) is important in diverse applications ranging from displays and optical storage to optical communication, bioimaging, and medical diagnostics. Although chiral luminescent materials can generate chiral emissions directly, they frequently suffer from either low DCP or low quantum efficiencies. Achieving high DCP and quantum efficiencies simultaneously remains extremely challenging. This review introduces an alternative approach to chiral emission. Chiral emission with large DCP can be readily achieved by combining conventional achiral emitters with chiral metasurfaces. Particularly, this article focuses on recent experimental and theoretical studies on perovskite metasurfaces and metacavities that employ achiral perovskite materials. First, chiral photoluminescence from extrinsic and intrinsic perovskite metasurfaces is explained together with theoretical discussions on metasurface design based on reciprocity and critical coupling. Chiral photoluminescence from other achiral materials is also explained. Subsequently, chiral electroluminescence from perovskite metacavities and other achiral materials is discussed. Finally, it is concluded with future perspectives. This review provides physical insights into how ideal chiral emission can be realized by optimizing the design of metasurfaces and metacavities. Compact chiral light sources with both near‐unity DCP and strong emission intensities can have far‐reaching consequences in a wide range of future applications.","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"23 22","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Optical Imaging Technologies for Microplastics Identification: Progress and Challenges 用于识别微塑料的先进光学成像技术:进展与挑战
IF 3.7
Advanced Photonics Research Pub Date : 2024-07-22 DOI: 10.1002/adpr.202400038
Yanmin Zhu, Yuxing Li, Jianqing Huang, Yunping Zhang, Yuen-Wa Ho, James Kar-Hei Fang, Edmund Y. Lam
{"title":"Advanced Optical Imaging Technologies for Microplastics Identification: Progress and Challenges","authors":"Yanmin Zhu,&nbsp;Yuxing Li,&nbsp;Jianqing Huang,&nbsp;Yunping Zhang,&nbsp;Yuen-Wa Ho,&nbsp;James Kar-Hei Fang,&nbsp;Edmund Y. Lam","doi":"10.1002/adpr.202400038","DOIUrl":"10.1002/adpr.202400038","url":null,"abstract":"<p>Global concern about microplastic (MP) and nanoplastic (NP) particles is continuously rising with their proliferation worldwide. Effective identification methods for MP and NP pollution monitoring are highly needed, but due to different requirements and technical challenges, much of the work is still in progress. Herein, the advanced optical imaging systems that are successfully applied or have the potential for MP identification are focused on. Compared with chemical and thermal analyses, optical methods have the unique advantages of being nondestructive and noncontact and allow fast detection without complex sample preprocessing. Furthermore, they are capable of revealing the morphology, anisotropy, and material characteristics of MP for their quick and robust detection. This review aims to present a comprehensive discussion of the relevant optical imaging systems, emphasizing their operating principles, strengths, and drawbacks. Multiple comparisons and analyses among these technologies are conducted in order to provide practical guidelines for researchers. In addition, the combination of optical and other alternative technologies is described and the representative portable MP detection devices are highlighted. Together, they shed light on the prospects for long-term MP pollution monitoring and environmental protection.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141815435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose 核壳粒子与纤维素结合产生的结构色彩
IF 3.7
Advanced Photonics Research Pub Date : 2024-07-22 DOI: 10.1002/adpr.202400091
Regina Leiner, Lukas Siegwardt, Catarina Ribeiro, Jonas Dörr, Christian Dietz, Robert W. Stark, Markus Gallei
{"title":"Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose","authors":"Regina Leiner,&nbsp;Lukas Siegwardt,&nbsp;Catarina Ribeiro,&nbsp;Jonas Dörr,&nbsp;Christian Dietz,&nbsp;Robert W. Stark,&nbsp;Markus Gallei","doi":"10.1002/adpr.202400091","DOIUrl":"10.1002/adpr.202400091","url":null,"abstract":"<p>\u0000Combining cellulose-based components with functional materials is highly interesting in various research fields due to the improved strength and stiffness of the materials combined with their low weight. Herein, the mechanical properties of opal films are improved by incorporating cellulose fibers and microcrystalline cellulose. This is evidenced by the increase in tensile strength of 162.8% after adding 10 wt% of microcrystalline cellulose. For this purpose, core–shell particles with a rigid, crosslinked polystyrene core and a soft shell of poly(ethyl acrylate) and poly(ethyl acrylate<i>-co</i>-hydroxyethyl methacrylate) are synthesized via starved-feed emulsion polymerization. The synthesized particles’ well-defined shape, morphology, and thermal properties are analyzed using transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry measurements. Free-standing mechanochromic opal films with incorporated cellulose and structural colors are obtained after processing the core–shell particles with cellulose via extrusion and the melt-shear organization technique. The homogeneous distribution of the cellulose within the composite material is investigated using fluorescent-labeled cellulose. The opal film's angle-dependent structural color is demonstrated using reflection spectroscopy.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141816616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetron Sputter Deposition of Amorphous Silicon–SiO2 Quantized Nanolaminates 磁控溅射沉积非晶硅-二氧化硅定量纳米层压板
IF 3.7
Advanced Photonics Research Pub Date : 2024-07-22 DOI: 10.1002/adpr.202400057
S. S. Thöny, Manuel Bärtschi, Marietta Batzer, Manuel Baselgia, Raphael Gmünder, Amit Sharma, Tijmen Vermeij, Xavier Maeder, Stephan Waldner
{"title":"Magnetron Sputter Deposition of Amorphous Silicon–SiO2 Quantized Nanolaminates","authors":"S. S. Thöny, Manuel Bärtschi, Marietta Batzer, Manuel Baselgia, Raphael Gmünder, Amit Sharma, Tijmen Vermeij, Xavier Maeder, Stephan Waldner","doi":"10.1002/adpr.202400057","DOIUrl":"https://doi.org/10.1002/adpr.202400057","url":null,"abstract":"Quantization effects in nanolaminate structures of oxide materials are proposed and experimentally demonstrated only recently. Herein, the material combination of amorphous silicon and SiO2 deposited by magnetron sputtering is investigated and it is shown that the quantization effect can be observed indeed. Transmission electron microscopy characterization gives evidence of continuous layers of amorphous silicon and SiO2 with well‐defined interfaces. The deposition process is described and the tunability of the refractive index and the bandgap energy is demonstrated. By doing so, the advantages of this novel material over classical optical materials are shown and feasibility is proved. As an example, a longpass optical interference filter with edge at 720 nm is deposited using quantized nanolaminates as the high and SiO2 as the low refractive index material. This filter can be deposited successfully with close match to the design. It shows a blocking range throughout the visible spectrum whereas a comparable filter based on SiO2–TiO2 only blocks 500–700 nm.","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"18 16","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Pixels to Information: Artificial Intelligence in Fluorescence Microscopy 从像素到信息:荧光显微镜中的人工智能
IF 3.7
Advanced Photonics Research Pub Date : 2024-07-15 DOI: 10.1002/adpr.202300308
Seungjae Han, Joshua Yedam You, Minho Eom, Sungjin Ahn, Eun-Seo Cho, Young-Gyu Yoon
{"title":"From Pixels to Information: Artificial Intelligence in Fluorescence Microscopy","authors":"Seungjae Han,&nbsp;Joshua Yedam You,&nbsp;Minho Eom,&nbsp;Sungjin Ahn,&nbsp;Eun-Seo Cho,&nbsp;Young-Gyu Yoon","doi":"10.1002/adpr.202300308","DOIUrl":"10.1002/adpr.202300308","url":null,"abstract":"<p>This review explores how artificial intelligence (AI) is transforming fluorescence microscopy, providing an overview of its fundamental principles and recent advancements. The roles of AI in improving image quality and introducing new imaging modalities are discussed, offering a comprehensive perspective on these changes. Additionally, a unified framework is introduced for comprehending AI-driven microscopy methodologies and categorizing them into linear inverse problem-solving, denoising, and nonlinear prediction. Furthermore, the potential of self-supervised learning techniques that address the challenges associated with training the networks are explored, utilizing unlabeled microscopy data to enhance data quality and expand imaging capabilities. It is worth noting that while the specific examples and advancements discussed in this review focus on fluorescence microscopy, the general approaches and theories are directly applicable to other optical microscopy methods.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300308","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radioluminescence Dosimetry in Modern Radiation Therapy 现代放射治疗中的放射剂量测量法
IF 3.7
Advanced Photonics Research Pub Date : 2024-07-15 DOI: 10.1002/adpr.202300350
Arash Darafsheh, Sreekrishna Murty Goddu, Jeffrey Williamson, Tiezhi Zhang, Lee G. Sobotka
{"title":"Radioluminescence Dosimetry in Modern Radiation Therapy","authors":"Arash Darafsheh,&nbsp;Sreekrishna Murty Goddu,&nbsp;Jeffrey Williamson,&nbsp;Tiezhi Zhang,&nbsp;Lee G. Sobotka","doi":"10.1002/adpr.202300350","DOIUrl":"10.1002/adpr.202300350","url":null,"abstract":"<p>Accurate and precise measurement of radiation energy delivered to and absorbed by the patient's tissue is of great importance in radiation therapy (RT) quality assurance. Radioluminescence (RL) dosimetry has shown great potential for high spatiotemporal resolution dose measurement of RT fields. Implementation of efficient RL dosimetry in RT requires multidisciplinary effort and skills in optics, medical physics, radiation physics, electronics, and imaging science. In this review, a wide overview of fundamentals and applications of RL properties of media for RT dosimetry with emphasis on their potential use for multidimensional, small-field, and ultra-high dose rate RT dosimetry is provided.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300350","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信