{"title":"High-Resolution Optical Convolutional Neural Networks Using Phase-Change Material-Based Microring Hybrid Waveguides","authors":"Shuguang Zhu, Zhengyang Zhang, Weiwei Tang, Leijun Xu, Li Han, Jie Hong, Yiming Yu, Ziying Li, Qinghua Qin, Changlong Liu, Libo Zhang, Songyuan Ding, Jiale He, Guanhai Li, Xiaoshuang Chen","doi":"10.1002/adpr.202470033","DOIUrl":null,"url":null,"abstract":"<p><b>Optical Convolutional Neural Networks</b>\n </p><p>In article number 2400108, Weiwei Tan, Jiale He, Guanhai Li, Xiaoshuang Chen, and co-workers propose an optical neural network that leverages GST-based microring waveguides for on-chip computing, offering 64 levels of transmission contrast with 6-bit resolution. It achieves high accuracy in image edge detection and recognition with potential for large-scale photonic neural networks.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202470033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical Convolutional Neural Networks
In article number 2400108, Weiwei Tan, Jiale He, Guanhai Li, Xiaoshuang Chen, and co-workers propose an optical neural network that leverages GST-based microring waveguides for on-chip computing, offering 64 levels of transmission contrast with 6-bit resolution. It achieves high accuracy in image edge detection and recognition with potential for large-scale photonic neural networks.