Advanced drug delivery reviews最新文献

筛选
英文 中文
Chaotic (bio)printing in the context of drug delivery systems 药物输送系统中的混沌(生物)印刷
IF 16.1 1区 医学
Advanced drug delivery reviews Pub Date : 2024-11-17 DOI: 10.1016/j.addr.2024.115475
Mario Moisés Alvarez, Ariel Cantoral-Sánchez, Grissel Trujillo-de Santiago
{"title":"Chaotic (bio)printing in the context of drug delivery systems","authors":"Mario Moisés Alvarez, Ariel Cantoral-Sánchez, Grissel Trujillo-de Santiago","doi":"10.1016/j.addr.2024.115475","DOIUrl":"https://doi.org/10.1016/j.addr.2024.115475","url":null,"abstract":"Chaotic (bio)printing, an innovative fabrication technique that uses chaotic flows to create highly ordered microstructures within materials, may be transformative for drug delivery systems. This review explores the principles underlying chaotic flows and their application in fabricating complex, multi-material constructs designed for advanced drug delivery and controlled release. Chaotic printing enables the precise layering of different active ingredients—a feature that may greatly facilitate the development of polypills with customizable release profiles.Additionally, chaos-assisted fabrication has been extended to produce micro-architected hydrogel spheres in a high-throughput manner, potentially enhancing the versatility and efficiency of drug delivery methods. In addition, chaotic bioprinting enables the creation of evolved tissue models that more accurately emulate physiological systems, providing a more relevant platform for drug testing. This review highlights the unique advantages of chaotic printing, including the ability to fabricate tissues with organized porosity and pre-vascularized structures, addressing critical challenges in tissue engineering. Despite its promising capabilities, challenges remain, particularly in expanding the range of materials compatible with chaotic printing. Continued research and development in this area are essential to fully realize the potential of chaotic (bio)printing in advancing drug delivery, paving the way for the next generation of smart drug delivery systems and functional tissue models for drug testing.","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"51 1","pages":""},"PeriodicalIF":16.1,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Delivery Systems for TreatingNeuroDevelopmentalDisorders. 治疗神经发育障碍的给药系统。
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-11-15 DOI: 10.1016/j.addr.2024.115473
Boaz Barak, Paolo Decuzzi
{"title":"Drug Delivery Systems for TreatingNeuroDevelopmentalDisorders.","authors":"Boaz Barak, Paolo Decuzzi","doi":"10.1016/j.addr.2024.115473","DOIUrl":"https://doi.org/10.1016/j.addr.2024.115473","url":null,"abstract":"","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":" ","pages":"115473"},"PeriodicalIF":15.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections 肺部感染抗菌光动力疗法中光敏剂和光传输策略的系统性概述
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-11-15 DOI: 10.1016/j.addr.2024.115472
Margarita O. Shleeva, Galina R. Demina, Alexander P. Savitsky
{"title":"A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections","authors":"Margarita O. Shleeva,&nbsp;Galina R. Demina,&nbsp;Alexander P. Savitsky","doi":"10.1016/j.addr.2024.115472","DOIUrl":"10.1016/j.addr.2024.115472","url":null,"abstract":"<div><div>Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"215 ","pages":"Article 115472"},"PeriodicalIF":15.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo 浸泡式光学清除剂在组织中的输送和动力学:从体内到体外的光学成像
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-10-29 DOI: 10.1016/j.addr.2024.115470
Tingting Yu , Xiang Zhong , Dongyu Li , Jingtan Zhu , Valery V. Tuchin , Dan Zhu
{"title":"Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo","authors":"Tingting Yu ,&nbsp;Xiang Zhong ,&nbsp;Dongyu Li ,&nbsp;Jingtan Zhu ,&nbsp;Valery V. Tuchin ,&nbsp;Dan Zhu","doi":"10.1016/j.addr.2024.115470","DOIUrl":"10.1016/j.addr.2024.115470","url":null,"abstract":"<div><div>Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their <em>ex vivo</em> to <em>in vivo</em> applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"215 ","pages":"Article 115470"},"PeriodicalIF":15.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids 细胞外囊泡与脂质纳米颗粒在递送核酸方面的比较
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-10-28 DOI: 10.1016/j.addr.2024.115461
Johannes Bader, Finn Brigger, Jean-Christophe Leroux
{"title":"Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids","authors":"Johannes Bader,&nbsp;Finn Brigger,&nbsp;Jean-Christophe Leroux","doi":"10.1016/j.addr.2024.115461","DOIUrl":"10.1016/j.addr.2024.115461","url":null,"abstract":"<div><div>Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for <em>in vivo</em> gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, <em>in vitro</em> and <em>in vivo</em> transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"215 ","pages":"Article 115461"},"PeriodicalIF":15.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of nanoparticle deformability on multiscale biotransport 纳米粒子变形性对多尺度生物传输的影响
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-08-31 DOI: 10.1016/j.addr.2024.115445
Hytham H. Gadalla , Zhongyue Yuan , Ziang Chen , Faisal Alsuwayyid , Subham Das , Harsa Mitra , Arezoo M. Ardekani , Ryan Wagner , Yoon Yeo
{"title":"Effects of nanoparticle deformability on multiscale biotransport","authors":"Hytham H. Gadalla ,&nbsp;Zhongyue Yuan ,&nbsp;Ziang Chen ,&nbsp;Faisal Alsuwayyid ,&nbsp;Subham Das ,&nbsp;Harsa Mitra ,&nbsp;Arezoo M. Ardekani ,&nbsp;Ryan Wagner ,&nbsp;Yoon Yeo","doi":"10.1016/j.addr.2024.115445","DOIUrl":"10.1016/j.addr.2024.115445","url":null,"abstract":"<div><p>Deformability is one of the critical attributes of nanoparticle (NP) drug carriers, along with size, shape, and surface properties. It affects various aspects of NP biotransport, ranging from circulation and biodistribution to interactions with biological barriers and target cells. Recent studies report additional roles of NP deformability in biotransport processes, including protein corona formation, intracellular trafficking, and organelle distribution. This review focuses on the literature published in the past five years to update our understanding of NP deformability and its effect on NP biotransport. We introduce different methods of modulating and evaluating NP deformability and showcase recent studies that compare a series of NPs in their performance in biotransport events at all levels, highlighting the consensus and disagreement of the findings. It concludes with a perspective on the intricacy of systematic investigation of NP deformability and future opportunities to advance its control toward optimal drug delivery.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"213 ","pages":"Article 115445"},"PeriodicalIF":15.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies 评估组织中分子扩散的光:病理鉴别
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-08-02 DOI: 10.1016/j.addr.2024.115420
Luís R. Oliveira , Maria R. Pinheiro , Daria K. Tuchina , Polina A. Timoshina , Maria I. Carvalho , Luís M. Oliveira
{"title":"Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies","authors":"Luís R. Oliveira ,&nbsp;Maria R. Pinheiro ,&nbsp;Daria K. Tuchina ,&nbsp;Polina A. Timoshina ,&nbsp;Maria I. Carvalho ,&nbsp;Luís M. Oliveira","doi":"10.1016/j.addr.2024.115420","DOIUrl":"10.1016/j.addr.2024.115420","url":null,"abstract":"<div><p>The evaluation of the diffusion properties of different molecules in tissues is a subject of great interest in various fields, such as dermatology/cosmetology, clinical medicine, implantology and food preservation. In this review, a discussion of recent studies that used kinetic spectroscopy measurements to evaluate such diffusion properties in various tissues is made. By immersing <em>ex vivo</em> tissues in agents or by topical application of those agents <em>in vivo</em>, their diffusion properties can be evaluated by kinetic collimated transmittance or diffuse reflectance spectroscopy. Using this method, recent studies were able to discriminate the diffusion properties of agents between healthy and diseased tissues, especially in the cases of cancer and diabetes mellitus. In the case of cancer, it was also possible to evaluate an increase of 5% in the mobile water content from the healthy to the cancerous colorectal and kidney tissues. Considering the application of some agents to living organisms or food products to protect them from deterioration during low temperature preservation (cryopreservation), and knowing that such agent inclusion may be reversed, some studies in these fields are also discussed. Considering the broadband application of the optical spectroscopy evaluation of the diffusion properties of agents in tissues and the physiological diagnostic data that such method can acquire, further studies concerning the optimization of fruit sweetness or evaluation of poison diffusion in tissues or antidote application for treatment optimization purposes are indicated as future perspectives.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"212 ","pages":"Article 115420"},"PeriodicalIF":15.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169409X24002424/pdfft?md5=b8367e26b483709981c036dc2434830a&pid=1-s2.0-S0169409X24002424-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmability and biomedical utility of intrinsically-disordered protein polymers 内在有序蛋白质聚合物的可编程性和生物医学用途。
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-07-31 DOI: 10.1016/j.addr.2024.115418
Maria Camila Giraldo-Castaño, Kai A. Littlejohn, Alexa Regina Chua Avecilla, Natalia Barrera-Villamizar, Felipe Garcia Quiroz
{"title":"Programmability and biomedical utility of intrinsically-disordered protein polymers","authors":"Maria Camila Giraldo-Castaño,&nbsp;Kai A. Littlejohn,&nbsp;Alexa Regina Chua Avecilla,&nbsp;Natalia Barrera-Villamizar,&nbsp;Felipe Garcia Quiroz","doi":"10.1016/j.addr.2024.115418","DOIUrl":"10.1016/j.addr.2024.115418","url":null,"abstract":"<div><p>Intrinsically disordered proteins (IDPs) exhibit molecular-level conformational dynamics that are functionally harnessed across a wide range of fascinating biological phenomena. The low sequence complexity of IDPs has led to the design and development of intrinsically-disordered protein polymers (IDPPs), a class of engineered repeat IDPs with stimuli-responsive properties. The perfect repetitive architecture of IDPPs allows for repeat-level encoding of tunable protein functionality. Designer IDPPs can be modeled on endogenous IDPs or engineered de novo as protein polymers with dual biophysical and biological functionality. Their properties can be rationally tailored to access enigmatic IDP biology and to create programmable smart biomaterials. With the goal of inspiring the bioengineering of multifunctional IDP-based materials, here we synthesize recent multidisciplinary progress in programming and exploiting the bio-functionality of IDPPs and IDPP-containing proteins. Collectively, expanding beyond the traditional sequence space of extracellular IDPs, emergent sequence-level control of IDPP functionality is fueling the bioengineering of self-assembling biomaterials, advanced drug delivery systems, tissue scaffolds, and biomolecular condensates —genetically encoded organelle-like structures. Looking forward, we emphasize open challenges and emerging opportunities, arguing that the intracellular behaviors of IDPPs represent a rich space for biomedical discovery and innovation. Combined with the intense focus on IDP biology, the growing landscape of IDPPs and their biomedical applications set the stage for the accelerated engineering of high-value biotechnologies and biomaterials.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"212 ","pages":"Article 115418"},"PeriodicalIF":15.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug delivery technologies for autoimmunity therapies 用于自身免疫疗法的给药技术。
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-07-27 DOI: 10.1016/j.addr.2024.115412
Ajay S. Thatte, Jessica D. Weaver, Ryan Pearson, Michael J. Mitchell
{"title":"Drug delivery technologies for autoimmunity therapies","authors":"Ajay S. Thatte,&nbsp;Jessica D. Weaver,&nbsp;Ryan Pearson,&nbsp;Michael J. Mitchell","doi":"10.1016/j.addr.2024.115412","DOIUrl":"10.1016/j.addr.2024.115412","url":null,"abstract":"","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"212 ","pages":"Article 115412"},"PeriodicalIF":15.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise subcellular targeting approaches for organelle-related disorders 针对细胞器相关疾病的精确亚细胞靶向方法。
IF 15.2 1区 医学
Advanced drug delivery reviews Pub Date : 2024-07-19 DOI: 10.1016/j.addr.2024.115411
Gayong Shim , Yu Seok Youn
{"title":"Precise subcellular targeting approaches for organelle-related disorders","authors":"Gayong Shim ,&nbsp;Yu Seok Youn","doi":"10.1016/j.addr.2024.115411","DOIUrl":"10.1016/j.addr.2024.115411","url":null,"abstract":"<div><p>Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"212 ","pages":"Article 115411"},"PeriodicalIF":15.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信