Oxidation of Metals最新文献

筛选
英文 中文
Developments in Materials for High-Temperature Corrosion and Oxidation 高温腐蚀和氧化材料的发展情况
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-13 DOI: 10.1007/s11085-024-10239-w
M. Adam Khan
{"title":"Developments in Materials for High-Temperature Corrosion and Oxidation","authors":"M. Adam Khan","doi":"10.1007/s11085-024-10239-w","DOIUrl":"10.1007/s11085-024-10239-w","url":null,"abstract":"","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 2","pages":"209 - 210"},"PeriodicalIF":2.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Fe Concentration on the High Temperature Oxidation Behavior of Fex(CrAlNi)100−x Medium Entropy Alloys 铁浓度对 Fex(CrAlNi)100-x 中熵合金高温氧化行为的影响
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-12 DOI: 10.1007/s11085-024-10231-4
Tugce Ozgenc, Kerem Ozgur Gunduz
{"title":"Effect of Fe Concentration on the High Temperature Oxidation Behavior of Fex(CrAlNi)100−x Medium Entropy Alloys","authors":"Tugce Ozgenc,&nbsp;Kerem Ozgur Gunduz","doi":"10.1007/s11085-024-10231-4","DOIUrl":"10.1007/s11085-024-10231-4","url":null,"abstract":"<div><p>In this study, effect of Fe concentration on the high temperature oxidation and microstructural stability of Fe<sub>x</sub>(CrAlNi)<sub>100−x</sub> alloys (x = 25, 35, 45, 55, 65) at 1100 °C up to 168 h was investigated in air. Increasing Fe concentration decreased the molar fraction of B2 phase in as-cast alloys. However, microhardness values experienced only a 10% reduction (Fe<sub>25</sub>: 517.7 ± 19 HV, Fe<sub>65</sub>: 470.6 ± 22 HV) due to well-distributed B2 precipitates. After the exposures, coarsening of B2 precipitates was observed in all alloys, leading to a microhardness reduction of 20–25% after 168 h. Single-phase α-Al<sub>2</sub>O<sub>3</sub> scales were formed on Fe<sub>25</sub>–Fe<sub>55</sub> alloys. However, increasing Fe concentration resulted in deeper depletion zones due to reduced molar fraction and Al concentration of B2 phase. Moreover, Fe<sub>65</sub> alloy failed to develop a protective α-Al<sub>2</sub>O<sub>3</sub> scale due to decreased molar phase fraction and Al concentration of B2 precipitates, along with the low Cr concentration of the A2 phase. Additionally, α-Al<sub>2</sub>O<sub>3</sub> scales were highly wrinkled due to the absence of reactive elements. Absence of reactive elements also resulted in oxide spallation and seemed to intensify with the increasing Fe concentration. Possible reasons for the increased oxide spallation with the increasing Fe concentration are discussed. Nevertheless, Fe<sub>25</sub>–Fe<sub>55</sub> alloys displayed oxidation properties comparable to those of lean FeCrAl alloys while also possessing enhanced mechanical properties due to B2 reinforcement.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 2","pages":"251 - 278"},"PeriodicalIF":2.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation on the Influence of Deep Cryogenic Soaking of Additive Manufactured SS 316L on Hardness and Corrosion Resistance 添加剂制造的 SS 316L 深冷浸泡对硬度和耐腐蚀性影响的实验研究
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-11 DOI: 10.1007/s11085-024-10235-0
N. K. Sreejith, V. Satheeshkumar, Muhammed Anaz Khan, T. Ram Prabhu
{"title":"Experimental Investigation on the Influence of Deep Cryogenic Soaking of Additive Manufactured SS 316L on Hardness and Corrosion Resistance","authors":"N. K. Sreejith,&nbsp;V. Satheeshkumar,&nbsp;Muhammed Anaz Khan,&nbsp;T. Ram Prabhu","doi":"10.1007/s11085-024-10235-0","DOIUrl":"10.1007/s11085-024-10235-0","url":null,"abstract":"<div><p>The influence of deep cryogenic soaking of additive manufactured stainless steel 316L (SS 316L) parts on hardness and corrosion resistance is investigated. The fabrication of SS 316L was carried out using selective laser melting (SLM). A Gaussian beam for laser energy dissemination was employed in SLM process to produce SS 316L specimens characterised by distinctive curved boundaries within the melt pool, resulting in a unique grain morphology featuring semicircular melt pool boundaries and layered patterns. The deep cryogenic soaking (DCS) process treatment, conducted at an ultra-low temperature of − 196 °C for an extended duration of 120 h immersed in liquid nitrogen medium, led to a significant improvement in the microstructure. An increased amount of fine-cellular grain microstructure was achieved, with an average grain size reduced from 1.01 ± 0.5 μm to 0.78 ± 0.5 μm. X-ray diffraction (XRD) analysis revealed that the DCS treatment did not alter the crystal structures, with both SLM and DCS specimens exhibiting the presence of the FCC-austenite phase. Surface roughness analysis indicated a noteworthy reduction following DCS treatment, with a 3.23% decrease in the average surface roughness (Ra) from 9.155 μm over the SLM SS 316L surface to 8.868 μm post-DCS exposure. Moreover, the mechanical properties exhibited substantial improvement, with SLM SS 316L samples having an average microhardness value of 193.16 HV, while DCS-treated samples exhibited an average microhardness value of 222.6 HV, marking a 15.24% enhancement attributed to grain structure refinement. XRD analysis also revealed peak broadening in DCS-treated specimens, suggesting the possibility of a more refined grain structure. This fine grain structure was found to hinder ion movement, resulting in a reduction in the corrosion rate from 0.004695 to 0.003965 mm/year. Although the improvement in corrosion resistance was marginal, it underscores the potential of DCS treatment in enhancing the resistance of SS 316L to corrosion.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 2","pages":"369 - 388"},"PeriodicalIF":2.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140116173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Chromium on the High Temperature Corrosion of Ni–Cr Alloys Exposed to Calcium Sulfate 铬对暴露于硫酸钙的镍铬合金高温腐蚀的影响
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-08 DOI: 10.1007/s11085-024-10232-3
Nicholas Ury, Vilupanur Ravi
{"title":"The Effects of Chromium on the High Temperature Corrosion of Ni–Cr Alloys Exposed to Calcium Sulfate","authors":"Nicholas Ury,&nbsp;Vilupanur Ravi","doi":"10.1007/s11085-024-10232-3","DOIUrl":"10.1007/s11085-024-10232-3","url":null,"abstract":"<div><p>Calcium- and sulfur-rich deposits have been linked to failure of turbine components as a consequence of high temperature exposures (&gt; 1000 °C). There are only limited studies on the effects of these deposits on the degradation behavior of turbine alloys. To gain further understanding of this phenomenon, a systematic study was undertaken with model binary nickel–chromium alloys. Three alloys with different chromium contents—low, medium and high—represented by Ni-5Cr, Ni-10Cr and Ni-18Cr, were exposed to CaSO<sub>4</sub>-deposit-induced corrosion in the 900–1100 °C temperature range. At 1000 and 1100 °C, the decomposition of CaSO<sub>4</sub> (either by decomposition to CaO and SO<sub>3</sub> or by reacting with Cr<sub>2</sub>O<sub>3</sub>) led to the formation of calcium chromates and chromium sulfides. At the lower temperature, 900 °C, the limited decomposition of CaSO<sub>4</sub> allowed the formation of a continuous Cr<sub>2</sub>O<sub>3</sub> scale.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"603 - 620"},"PeriodicalIF":2.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of TiC and WC Addition on the Mechanism and Kinetics of Isothermal Oxidation and High-Temperature Stability of ZrB2–SiC Composites 添加 TiC 和 WC 对 ZrB2-SiC 复合材料等温氧化机理和动力学以及高温稳定性的影响
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-08 DOI: 10.1007/s11085-024-10234-1
Pradyut Sengupta, Indranil Manna
{"title":"Role of TiC and WC Addition on the Mechanism and Kinetics of Isothermal Oxidation and High-Temperature Stability of ZrB2–SiC Composites","authors":"Pradyut Sengupta,&nbsp;Indranil Manna","doi":"10.1007/s11085-024-10234-1","DOIUrl":"10.1007/s11085-024-10234-1","url":null,"abstract":"<div><p>This study investigates the influence of separate and combined addition of 5 vol.% TiC and/or WC on the isothermal oxidation behaviour of ZrB<sub>2</sub>–20 vol.% SiC composites consolidated by a spark plasma sintering route. The oxidation performance of the composites was evaluated in the temperature range of 1500–1600 °C in air for up to 4 h. Following oxidation, the samples were subjected to a detailed characterization of the microstructure, micro-composition, phase aggregate, and oxide scale growth kinetics. The thermodynamic feasibility of probable reactions and the phase stability of Zr–B–O, Zr–Si–O, Ti–B–O, Ti–C–O, Ti–W–O, and W–C–O systems were examined by dedicated software. While addition of TiC or WC was found to result in protective oxide scale formation, the highest oxidation resistance in terms of reduced mass gain and oxide layer thickness was offered by ZrB<sub>2</sub>–20SiC–2.5TiC–2.5WC (vol.%) composite at 1500–1600 °C in air.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 1 supplement","pages":"57 - 83"},"PeriodicalIF":2.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Temperature Corrosion Behavior of Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C Austenitic Steels Depending on Dissolved Oxygen Concentration in Static Liquid Pb at 700 °C 700 °C 时静态液态铅中的溶解氧浓度对 Fe-18Ni-12Cr-2.9Al 和 Fe-18Ni-12Cr-2.3Al-Nb-C 奥氏体钢高温腐蚀性能的影响
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-07 DOI: 10.1007/s11085-024-10233-2
Valentyn Tsisar, Zhangjian Zhou, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys, Carsten Schroer
{"title":"High-Temperature Corrosion Behavior of Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C Austenitic Steels Depending on Dissolved Oxygen Concentration in Static Liquid Pb at 700 °C","authors":"Valentyn Tsisar,&nbsp;Zhangjian Zhou,&nbsp;Olaf Wedemeyer,&nbsp;Aleksandr Skrypnik,&nbsp;Jürgen Konys,&nbsp;Carsten Schroer","doi":"10.1007/s11085-024-10233-2","DOIUrl":"10.1007/s11085-024-10233-2","url":null,"abstract":"<div><p>The corrosion behavior of the aluminum-alloyed austenitic steels Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C was investigated at 700 °C in static Pb for 1000 h as a function of the concentration of dissolved oxygen in the liquid metal. In Pb with ~ 5 × 10<sup>–9</sup> mass % dissolved oxygen, both steels showed dissolution. Depth of corrosion averaged 67 (± 18) µm and 78 (± 25) µm for Fe-18Ni-12Cr-2.3Al-Nb-C and Fe-18Ni-12Cr-2.9Al, respectively. In Pb with higher oxidation potential of 2 × 10<sup>–6</sup> mass %O, both steels showed protective and accelerated oxidation. The protective thin oxide film (≤ 1 µm) was composed of outermost Fe-rich, intermediate Cr-rich and inner Al-rich sublayers. The thicker oxide scale was of irregular thickness (2 ÷ 30 µm) and consisted of Fe–Cr mixed oxide with Ni-rich metallic inclusions.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"589 - 602"},"PeriodicalIF":2.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Investigation on Volcanic Ash Infiltration Resistance of Plasma-Sprayed Indigenous Yb2Zr2O7 and Conventional YSZ Coatings at Elevated Temperatures 等离子体喷涂土著 Yb2Zr2O7 和传统 YSZ 涂层在高温下抗火山灰渗透性的研究
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-06 DOI: 10.1007/s11085-024-10226-1
Rahul Jude Alroy, K. Praveen, Junaid Syed, L. Rama Krishna, G. Sivakumar
{"title":"An Investigation on Volcanic Ash Infiltration Resistance of Plasma-Sprayed Indigenous Yb2Zr2O7 and Conventional YSZ Coatings at Elevated Temperatures","authors":"Rahul Jude Alroy,&nbsp;K. Praveen,&nbsp;Junaid Syed,&nbsp;L. Rama Krishna,&nbsp;G. Sivakumar","doi":"10.1007/s11085-024-10226-1","DOIUrl":"10.1007/s11085-024-10226-1","url":null,"abstract":"<div><p>The modern turbines aimed to work at enhanced efficiencies demand the use of a novel high-performance thermal barrier coating (TBC) which may be susceptible to multiple failure modes. Specifically, ingestion of calcium–magnesium–alumino–silicate (CMAS) or volcanic ash (VA) at elevated temperatures induce accelerated deterioration of conventional yttria-stabilized zirconia (YSZ) TBCs. The ability to form an impervious and rapidly crystallizing rare earth-based apatite layer upon interaction with CMAS/VA salt favors the choice of rare earth zirconates (REZs) as novel TBCs. Among diverse REZs, Yb<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (YbZ) exhibits ideal TBC characteristics. A detailed insight into YbZ coating characteristics and performance is vitally needed to qualify these materials for TBC applications. Accordingly, in this study indigenously developed YbZ and commercial YSZ were deposited by air plasma spraying. Subsequently, the VA infiltration resistance of deposited coatings was comprehensively compared up to 1350 °C. The SEM analysis of VA-infiltrated YSZ and YbZ coatings revealed the thickness of the infiltration zone and the corresponding mechanism. YbZ coatings displayed significantly better VA infiltration resistance attributed to forming an impervious Yb-apatite-based arresting layer and pinning the further seepage of the VA salt front. Besides, VA rapidly infiltrated YSZ coatings, which failed to form an arresting layer. Overall, the study provides essential insights and thrust in developing next-generation TBCs.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"573 - 588"},"PeriodicalIF":2.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140047253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Oxidation Behavior of CoCrFe2Ni0.5 High Entropy Alloy Through Powder-Pack Boriding 通过粉末包硼改善 CoCrFe2Ni0.5 高熵合金的氧化性能
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-05 DOI: 10.1007/s11085-024-10228-z
Yiğit Garip
{"title":"Improving the Oxidation Behavior of CoCrFe2Ni0.5 High Entropy Alloy Through Powder-Pack Boriding","authors":"Yiğit Garip","doi":"10.1007/s11085-024-10228-z","DOIUrl":"10.1007/s11085-024-10228-z","url":null,"abstract":"<div><p>The oxidation performance of CoCrFe<sub>2</sub>Ni<sub>0.5</sub> HEA borided through a powder-pack boriding process was investigated at 900 °C for 120 h. The boriding process at 900 °C for 6 h resulted in the formation of a two-zone structure: the outmost part contained a Ni<sub>2</sub>Si layer and the inner part consisted of a MB/M<sub>2</sub>B layer. The borided alloy displayed better oxidation resistance with the least oxidation rate constant value of 0.0383 (mg<sup>n</sup> cm<sup>−2n</sup> h<sup>−1</sup>). Moreover, this alloy rendered a continuous oxide layer that was denser, more compact, and contained fewer defects, which confirmed the improvement in oxidation resistance. The Ni<sub>2</sub>Si layer plus the boride layer was responsible for the enhanced oxidation performance of borided alloy.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"549 - 571"},"PeriodicalIF":2.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10228-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Thermal Deformation Behavior Exhibited by Oxidation Products in Fe–Si Alloys 研究铁硅合金中氧化产物的热变形行为
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-03-04 DOI: 10.1007/s11085-024-10230-5
Guangming Cao, Wencong Zhao, Wenchao Shan, Silin Li, Wentao Song, Hao Wang, Zhenyu Liu
{"title":"Investigation of the Thermal Deformation Behavior Exhibited by Oxidation Products in Fe–Si Alloys","authors":"Guangming Cao,&nbsp;Wencong Zhao,&nbsp;Wenchao Shan,&nbsp;Silin Li,&nbsp;Wentao Song,&nbsp;Hao Wang,&nbsp;Zhenyu Liu","doi":"10.1007/s11085-024-10230-5","DOIUrl":"10.1007/s11085-024-10230-5","url":null,"abstract":"<div><p>The thermal deformation behavior of oxidation products formed on Fe–Si alloys with varying Si contents was systematically investigated using a thermal simulation testing machine during compressive deformation at temperatures ranging from 800 to 1100 °C. It is found that the higher the deformation temperature is, the better the plasticity of the oxide product is, and the better the deformation coordination between the oxidation product and the substrate, where the deformation mainly occurs in the FeO layer. The increase of Si content reduces the coordination of deformation between the oxidation product and the substrate, but it can improve the interface straightness. The crystal structure of the oxidation product determines its plastic deformation ability, and the deformation mechanism of FeO is determined by the dislocation slip and climb, and its plastic deformation ability is the best. The dislocation slip dominates the deformation mechanism of Fe<sub>3</sub>O<sub>4</sub>, and the deformation ability is the second, and Fe<sub>2</sub>O<sub>3</sub> has basically no plastic deformation ability. Therefore, the increase of the Si content leads to the reduction of the proportion of the FeO layer in the oxidation product, which is the main reason for the decrease of the deformation coordination between the oxidation product and the substrate. As Si element forms a spinel solid solution composed of Fe<sub>2</sub>SiO<sub>4</sub> with FeO and SiO<sub>2</sub> at the interface, it has good plastic deformation ability and can deform synchronously with the substrate, and the porous structure can effectively relieve the compressive stress during deformation, which can effectively improve the interface straightness. In addition, the increase of Si content makes the concentration of iron ions in FeO close to the substrate side lower, which causes the increase of point defect concentration to promote the dislocation climbing of FeO, and makes the steady-state plastic deformation ability of FeO close to the substrate side higher, which improves the straightness of the interface between the oxidation product and the substrate.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"529 - 548"},"PeriodicalIF":2.1,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10230-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140035739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-corrosive Efficiency of Expired Propranolol Drug as a Corrosion Inhibitor on Mild Steel in Acid Medium 过期普萘洛尔药物作为酸性介质中腐蚀抑制剂对低碳钢的抗腐蚀效率
IF 2.1 3区 材料科学
Oxidation of Metals Pub Date : 2024-02-26 DOI: 10.1007/s11085-024-10227-0
H. Mohamed Kasim Sheit, S. Musthafa Kani, M. Anwar Sathiq, K. S. Mohan, S. S. Syed Abuthahir
{"title":"Anti-corrosive Efficiency of Expired Propranolol Drug as a Corrosion Inhibitor on Mild Steel in Acid Medium","authors":"H. Mohamed Kasim Sheit,&nbsp;S. Musthafa Kani,&nbsp;M. Anwar Sathiq,&nbsp;K. S. Mohan,&nbsp;S. S. Syed Abuthahir","doi":"10.1007/s11085-024-10227-0","DOIUrl":"10.1007/s11085-024-10227-0","url":null,"abstract":"<div><p>Propranolol is a pharmaceutical organic drug used for the treatment of high blood pressure, heart problems and anxiety diseases. The disposal of the expired drug threatens the environment, but still, it contains active components. The potentiality of the active components of the expired propranolol drug (EPD) has utilized to protect the mild steel corrosion in 1.0 M hydrochloric acid medium. Weight loss method, potentiodynamic polarization, ac-electrochemical impedance spectroscopy, scanning electron microscopy with energy disperse X-ray spectroscopy and atomic force microscopy (AFM) were used to investigate the expired propranolol drug’s capacity to defend mild steel surfaces against corrosion in 1 M HCl medium. The outcomes of the studies demonstrate that expired propranolol drug efficiently inhibits the corrosion of mild steel in 1.0 M HCl medium at various temperatures and inhibitor concentrations. The maximum inhibition efficiency obtained by the weight loss method was 89.81% at 0.01 M EPD concentration at 303 K. EPD has been determined to follow the Temkin’s adsorption isotherm model. The SEM–EDX and AFM images were indicated that the formation of protective layer on the surface of mild steel against the acid attack. Potentiodynamic polarization studies showed that the inhibition mechanism is mixed mode and predominantly cathodic control. The observed values of ∆<i>G</i><sup>0</sup><sub>ads</sub>, indicated that the inhibitive effect is exothermic and spontaneous. Furthermore, the determined thermodynamic parameters suggest that the adsorption process is spontaneous.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 2","pages":"351 - 367"},"PeriodicalIF":2.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信