Vicent Ssenteza, Torbjörn Jonsson, Johanna Nockert, Jesper Liske
{"title":"盐酸对 600 °C 下不锈钢/铁铬铝合金碱诱导腐蚀的影响:断裂后的故事","authors":"Vicent Ssenteza, Torbjörn Jonsson, Johanna Nockert, Jesper Liske","doi":"10.1007/s11085-024-10265-8","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of Cl on alkali-induced high-temperature corrosion of stainless steels/FeCrAl alloys after breakaway oxidation was investigated in a simulated biomass- and waste-fired boiler environment at 600 °C. For this investigation, three alloys were exposed to low Cl load environment (H<sub>2</sub>O+KCl) and to high Cl load (H<sub>2</sub>O+KCl+HCl). Post-exposure analysis showed that the stainless steel SVM12 experiences fast oxidation and forms thick double-layered Fe-rich oxide scales. The corrosion attack is further accelerated with addition of HCl for this material with the effect being more pronounced in the inward-growing scale. The FeCrAl and FeCrNi alloys exhibit slower oxidation kinetics after the breakaway corrosion compared to SVM12 in the H<sub>2</sub>O+KCl exposure. Furthermore, in contrast with SVM12, the addition of HCl did not accelerate the corrosion attack on these alloys. It is argued that the properties of the secondary oxide layer formed after breakaway corrosion are important in the continued corrosion resistance against chlorine-induced corrosion attack. Especially, the Cr content in the inner scales is suggested to be important in corrosion mitigation.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 5","pages":"1067 - 1076"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10265-8.pdf","citationCount":"0","resultStr":"{\"title\":\"The Impact of HCl on Alkali-Induced Corrosion of Stainless Steels/FeCrAl Alloy at 600 °C: The Story After Breakaway\",\"authors\":\"Vicent Ssenteza, Torbjörn Jonsson, Johanna Nockert, Jesper Liske\",\"doi\":\"10.1007/s11085-024-10265-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The impact of Cl on alkali-induced high-temperature corrosion of stainless steels/FeCrAl alloys after breakaway oxidation was investigated in a simulated biomass- and waste-fired boiler environment at 600 °C. For this investigation, three alloys were exposed to low Cl load environment (H<sub>2</sub>O+KCl) and to high Cl load (H<sub>2</sub>O+KCl+HCl). Post-exposure analysis showed that the stainless steel SVM12 experiences fast oxidation and forms thick double-layered Fe-rich oxide scales. The corrosion attack is further accelerated with addition of HCl for this material with the effect being more pronounced in the inward-growing scale. The FeCrAl and FeCrNi alloys exhibit slower oxidation kinetics after the breakaway corrosion compared to SVM12 in the H<sub>2</sub>O+KCl exposure. Furthermore, in contrast with SVM12, the addition of HCl did not accelerate the corrosion attack on these alloys. It is argued that the properties of the secondary oxide layer formed after breakaway corrosion are important in the continued corrosion resistance against chlorine-induced corrosion attack. Especially, the Cr content in the inner scales is suggested to be important in corrosion mitigation.</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 5\",\"pages\":\"1067 - 1076\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11085-024-10265-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10265-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10265-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The Impact of HCl on Alkali-Induced Corrosion of Stainless Steels/FeCrAl Alloy at 600 °C: The Story After Breakaway
The impact of Cl on alkali-induced high-temperature corrosion of stainless steels/FeCrAl alloys after breakaway oxidation was investigated in a simulated biomass- and waste-fired boiler environment at 600 °C. For this investigation, three alloys were exposed to low Cl load environment (H2O+KCl) and to high Cl load (H2O+KCl+HCl). Post-exposure analysis showed that the stainless steel SVM12 experiences fast oxidation and forms thick double-layered Fe-rich oxide scales. The corrosion attack is further accelerated with addition of HCl for this material with the effect being more pronounced in the inward-growing scale. The FeCrAl and FeCrNi alloys exhibit slower oxidation kinetics after the breakaway corrosion compared to SVM12 in the H2O+KCl exposure. Furthermore, in contrast with SVM12, the addition of HCl did not accelerate the corrosion attack on these alloys. It is argued that the properties of the secondary oxide layer formed after breakaway corrosion are important in the continued corrosion resistance against chlorine-induced corrosion attack. Especially, the Cr content in the inner scales is suggested to be important in corrosion mitigation.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.