Brain and neuroscience advances最新文献

筛选
英文 中文
Neuroimmunological effects of early life experiences. 早年生活经历对神经免疫学的影响。
Brain and neuroscience advances Pub Date : 2020-09-21 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820953706
Nichola M Brydges, Jack Reddaway
{"title":"Neuroimmunological effects of early life experiences.","authors":"Nichola M Brydges, Jack Reddaway","doi":"10.1177/2398212820953706","DOIUrl":"10.1177/2398212820953706","url":null,"abstract":"<p><p>Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820953706"},"PeriodicalIF":0.0,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/4f/10.1177_2398212820953706.PMC7513403.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38453538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired episodic simulation in a patient with visual memory deficit amnesia. 视觉记忆缺失性遗忘症患者的情节模拟能力受损。
Brain and neuroscience advances Pub Date : 2020-09-09 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820954384
Alexander Easton, Jamie P Cockcroft, Kamar E Ameen-Ali, Madeline J Eacott
{"title":"Impaired episodic simulation in a patient with visual memory deficit amnesia.","authors":"Alexander Easton, Jamie P Cockcroft, Kamar E Ameen-Ali, Madeline J Eacott","doi":"10.1177/2398212820954384","DOIUrl":"10.1177/2398212820954384","url":null,"abstract":"<p><p>For the first time, we assess episodic simulation in a patient with visual memory deficit amnesia, following damage to visual association cortices. Compared to control participants, the patient with visual memory deficit amnesia shows severely restricted responses when asked to simulate different types of future episodic scenarios. Surprisingly, the patient's responses are more limited in cases where the scenarios require less reliance on visual information. We explain this counterintuitive finding through discussing how the severe retrograde amnesia in visual memory deficit amnesia limits the patient's access to episodic memories in which vision has not been a focus of their life. As a result, we argue that the deficits in visual memory deficit amnesia continue to distinguish it from amnesia after direct damage to the hippocampus.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820954384"},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/95/10.1177_2398212820954384.PMC7488605.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38409483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organisation of cingulum bundle fibres connecting the anterior thalamic nuclei with the rodent anterior cingulate and retrosplenial cortices. 连接丘脑前核与啮齿动物前扣带和脾后皮质的扣带束纤维的组织。
Brain and neuroscience advances Pub Date : 2020-09-09 eCollection Date: 2020-01-01
Emma J Bubb, Andrew J D Nelson, Thomas C Cozens, John P Aggleton
{"title":"Organisation of cingulum bundle fibres connecting the anterior thalamic nuclei with the rodent anterior cingulate and retrosplenial cortices.","authors":"Emma J Bubb,&nbsp;Andrew J D Nelson,&nbsp;Thomas C Cozens,&nbsp;John P Aggleton","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Despite considerable interest in the properties of the cingulum bundle, descriptions of the composition of this major pathway in the rodent brain have not kept pace with advances in tract tracing. Using complementary approaches in rats and mice, this study examined the dense, reciprocal connections the anterior thalamic nuclei have with the cingulate and retrosplenial cortices, connections thought to be major contributors to the rodent cingulum bundle. The rat data came from a mixture of fluorescent and viral tracers, some injected directly into the bundle. The mouse data were collated from the Allen Mouse Brain Atlas. The projections from the three major anterior thalamic nuclei occupied much of the external medullary stratum of the cingulum bundle, where they were concentrated in its more medial portions. These anterior thalamic projections formed a rostral-reaching basket of efferents prior to joining the cingulum bundle, with anteromedial efferents taking the most rostral routes, often reaching the genu of the corpus callosum, while anterodorsal efferents took the least rostral route. In contrast, the return cortico-anterior thalamic projections frequently crossed directly through the bundle or briefly joined the internal stratum of the cingulum bundle, often entering the internal capsule before reaching the anterior thalamus. These analyses confirm that anterior thalamic connections comprise an important component of the rodent cingulum bundle, while also demonstrating the very different routes used by thalamo-cortical and cortico-thalamic projections. This information reveals how the composition of the cingulum bundle alters along its length.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820957160"},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38409485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naïve to expert: Considering the role of previous knowledge in memory. 从新手到专家:考虑以往知识在记忆中的作用。
Brain and neuroscience advances Pub Date : 2020-08-31 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820948686
Alejandra Alonso, Jacqueline van der Meij, Dorothy Tse, Lisa Genzel
{"title":"Naïve to expert: Considering the role of previous knowledge in memory.","authors":"Alejandra Alonso, Jacqueline van der Meij, Dorothy Tse, Lisa Genzel","doi":"10.1177/2398212820948686","DOIUrl":"10.1177/2398212820948686","url":null,"abstract":"<p><p>In humans, most of our new memories are in some way or another related to what we have already experienced. However, in memory research, especially in non-human animal research, subjects are often mostly naïve to the world. But we know that previous knowledge will change how memories are processed and which brain areas are critical at which time point. Each process from encoding, consolidation, to memory retrieval will be affected. Here, we summarise previous knowledge effects on the neurobiology of memory in both humans and non-human animals, with a special focus on schemas - associative network structures. Furthermore, we propose a new theory on how there may be a continuous gradient from naïve to expert, which would modulate the importance and role of brain areas, such as the hippocampus and prefrontal cortex.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820948686"},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/3a/10.1177_2398212820948686.PMC7479862.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38498176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild inflammation causes a reduction in resting-state amplitude of low-frequency fluctuation in healthy adult males. 轻度炎症导致健康成年男性静息状态低频波动幅度减小。
Brain and neuroscience advances Pub Date : 2020-08-19 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820949353
Kristian Stefanov, John McLean, Becky Allan, Jonathan Cavanagh, Rajeev Krishnadas
{"title":"Mild inflammation causes a reduction in resting-state amplitude of low-frequency fluctuation in healthy adult males.","authors":"Kristian Stefanov,&nbsp;John McLean,&nbsp;Becky Allan,&nbsp;Jonathan Cavanagh,&nbsp;Rajeev Krishnadas","doi":"10.1177/2398212820949353","DOIUrl":"https://doi.org/10.1177/2398212820949353","url":null,"abstract":"<p><p>Systemic inflammation has been associated with negative mood states and human sickness behaviour. Previous studies have shown an association between systemic inflammation and changes in task-related blood-oxygen-level-dependent activity and functional connectivity within large-scale networks. However, no study has examined the effect of inflammation on the magnitude of blood-oxygen-level-dependent low-frequency fluctuations at rest. We used a double-blind placebo-controlled crossover design to randomise 20 male subjects (aged 20-50 years) to receive either a <i>Salmonella typhi</i> vaccine or a placebo saline injection at two separate sessions. All participants underwent a resting-state functional magnetic resonance scan and a measure of inflammation (interleukin 6) and mood (Profile of Mood States) 3 h after injection. We compared the whole brain amplitude of low-frequency fluctuations between the vaccine and placebo conditions using a repeated measures design. Vaccine condition was associated with greater interleukin 6 levels (p < 0.001). Vaccine condition was also associated with lower amplitude of low-frequency fluctuations in the right and left frontal pole, superior frontal gyrus, paracingulate gyrus (Cluster 1) and the right mid and inferior frontal gyrus (Cluster 2) (p < 0.001, false discovery rate corrected). Lower amplitude of low-frequency fluctuations pertaining to first cluster correlated with greater total Profile of Mood States score (worse mood) (r = -0.38; p = 0.04). These results imply possible excitation/inhibition imbalance mechanisms during inflammation that may be a relevant target in psychiatric disease, especially mood disorders.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820949353"},"PeriodicalIF":0.0,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212820949353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38403058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissociating the effects of distraction and proactive interference on object memory through tests of novelty preference 通过新颖性偏好测试分离分心和主动干扰对对象记忆的影响
Brain and neuroscience advances Pub Date : 2020-08-17 DOI: 10.1177/23982128211003199
Katie Landreth, Ugne Simanavicuite, Jennifer Fletcher, Ben Grayson, Robyn A. Grant, Micheal Harte, John Gigg
{"title":"Dissociating the effects of distraction and proactive interference on object memory through tests of novelty preference","authors":"Katie Landreth, Ugne Simanavicuite, Jennifer Fletcher, Ben Grayson, Robyn A. Grant, Micheal Harte, John Gigg","doi":"10.1177/23982128211003199","DOIUrl":"https://doi.org/10.1177/23982128211003199","url":null,"abstract":"Encoding information into memory is sensitive to distraction while retrieving that memory may be compromised by proactive interference from pre-existing memories. These two debilitating effects are common in neuropsychiatric conditions, but modelling them preclinically to date is slow as it requires prolonged operant training. A step change would be the validation of functionally equivalent but fast, simple, high-throughput tasks based on spontaneous behaviour. Here, we show that spontaneous object preference testing meets these requirements in the subchronic phencyclidine rat model for cognitive impairments associated with schizophrenia. Subchronic phencyclidine rats show clear memory sensitivity to distraction in the standard novel object recognition task. However, due to this, standard novel object recognition task cannot assess proactive interference. Therefore, we compared subchronic phencyclidine performance in standard novel object recognition task to that using the continuous novel object recognition task, which offers minimal distraction, allowing disease-relevant memory deficits to be assessed directly. We first determined that subchronic phencyclidine treatment did not affect whisker movements during object exploration. Subchronic phencyclidine rats exhibited the expected distraction standard novel object recognition task effect but had intact performance on the first continuous novel object recognition task trial, effectively dissociating distraction using two novel object recognition task variants. In remaining continuous novel object recognition task trials, the cumulative discrimination index for subchronic phencyclidine rats was above chance throughout, but, importantly, their detection of object novelty was increasingly impaired relative to controls. We attribute this effect to the accumulation of proactive interference. This is the first demonstration that increased sensitivity to distraction and proactive interference, both key cognitive impairments in schizophrenia, can be dissociated in the subchronic phencyclidine rat using two variants of the same fast, simple, spontaneous object memory paradigm.","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/23982128211003199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46568558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation 海马依赖性柔性空间导航的强化学习方法
Brain and neuroscience advances Pub Date : 2020-07-31 DOI: 10.1101/2020.07.30.229005
Charline Tessereau, R. O’Dea, S. Coombes, T. Bast
{"title":"Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation","authors":"Charline Tessereau, R. O’Dea, S. Coombes, T. Bast","doi":"10.1101/2020.07.30.229005","DOIUrl":"https://doi.org/10.1101/2020.07.30.229005","url":null,"abstract":"Humans and non-human animals show great flexibility in spatial navigation, including the ability to return to specific locations based on as few as one single experience. To study spatial navigation in the laboratory, watermaze tasks, in which rats have to find a hidden platform in a pool of cloudy water surrounded by spatial cues, have long been used. Analogous tasks have been developed for human participants using virtual environments. Spatial learning in the watermaze is facilitated by the hippocampus. In particular, rapid, one-trial, allocentric place learning, as measured in the delayed-matching-to-place variant of the watermaze task, which requires rodents to learn repeatedly new locations in a familiar environment, is hippocampal dependent. In this article, we review some computational principles, embedded within a reinforcement learning framework, that utilise hippocampal spatial representations for navigation in watermaze tasks. We consider which key elements underlie their efficacy, and discuss their limitations in accounting for hippocampus-dependent navigation, both in terms of behavioural performance (i.e. how well do they reproduce behavioural measures of rapid place learning) and neurobiological realism (i.e. how well do they map to neurobiological substrates involved in rapid place learning). We discuss how an actor–critic architecture, enabling simultaneous assessment of the value of the current location and of the optimal direction to follow, can reproduce one-trial place learning performance as shown on watermaze and virtual delayed-matching-to-place tasks by rats and humans, respectively, if complemented with map-like place representations. The contribution of actor–critic mechanisms to delayed-matching-to-place performance is consistent with neurobiological findings implicating the striatum and hippocampo-striatal interaction in delayed-matching-to-place performance, given that the striatum has been associated with actor–critic mechanisms. Moreover, we illustrate that hierarchical computations embedded within an actor–critic architecture may help to account for aspects of flexible spatial navigation. The hierarchical reinforcement learning approach separates trajectory control via a temporal-difference error from goal selection via a goal prediction error and may account for flexible, trial-specific, navigation to familiar goal locations, as required in some arm-maze place memory tasks, although it does not capture one-trial learning of new goal locations, as observed in open field, including watermaze and virtual, delayed-matching-to-place tasks. Future models of one-shot learning of new goal locations, as observed on delayed-matching-to-place tasks, should incorporate hippocampal plasticity mechanisms that integrate new goal information with allocentric place representation, as such mechanisms are supported by substantial empirical evidence.","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45134498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Ventral midline thalamus is not necessary for systemic consolidation of a social memory in the rat. 腹侧丘脑中线对大鼠社会记忆的系统巩固不是必需的。
Brain and neuroscience advances Pub Date : 2020-07-21 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820939738
Etienne Quet, Jean-Christophe Cassel, Brigitte Cosquer, Marine Galloux, Anne Pereira De Vasconcelos, Aline Stéphan
{"title":"Ventral midline thalamus is not necessary for systemic consolidation of a social memory in the rat.","authors":"Etienne Quet,&nbsp;Jean-Christophe Cassel,&nbsp;Brigitte Cosquer,&nbsp;Marine Galloux,&nbsp;Anne Pereira De Vasconcelos,&nbsp;Aline Stéphan","doi":"10.1177/2398212820939738","DOIUrl":"https://doi.org/10.1177/2398212820939738","url":null,"abstract":"<p><p>According to the standard theory of memory consolidation, recent memories are stored in the hippocampus before their transfer to cortical modules, a process called systemic consolidation. The ventral midline thalamus (reuniens and rhomboid nuclei, ReRh) takes part in this transfer as its lesion disrupts systemic consolidation of spatial and contextual fear memories. Here, we wondered whether ReRh lesions would also affect the systemic consolidation of another type of memory, namely an olfaction-based social memory. To address this question we focused on social transmission of food preference. Adult Long-Evans rats were subjected to N-methyl-d-aspartate-induced, fibre-sparing lesions of the ReRh nuclei or to a sham-operation, and subsequently trained in a social transmission of food preference paradigm. Retrieval was tested on the next day (recent memory, n<sub>Sham</sub> = 10, n<sub>ReRh</sub> = 12) or after a 25-day delay (remote memory, n<sub>Sham</sub> = 10, n<sub>ReRh</sub> = 10). All rats, whether sham-operated or subjected to ReRh lesions, learned and remembered the task normally, whatever the delay. Compared to our former results on spatial and contextual fear memories (Ali et al., 2017; Klein et al., 2019; Loureiro et al., 2012; Quet et al., 2020), the present findings indicate that the ReRh nuclei might not be part of a generic, systemic consolidation mechanism processing all kinds of memories in order to make them persistent. The difference between social transmission of food preference and spatial or contextual fear memories could be explained by the fact that social transmission of food preference is not hippocampus-dependent and that the persistence of social transmission of food preference memory relies on different circuits.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820939738"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212820939738","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38403054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The role of the locus coeruleus in the generation of pathological anxiety. 蓝斑在病理性焦虑产生中的作用。
Brain and neuroscience advances Pub Date : 2020-07-21 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820930321
Laurel S Morris, Jordan G McCall, Dennis S Charney, James W Murrough
{"title":"The role of the locus coeruleus in the generation of pathological anxiety.","authors":"Laurel S Morris,&nbsp;Jordan G McCall,&nbsp;Dennis S Charney,&nbsp;James W Murrough","doi":"10.1177/2398212820930321","DOIUrl":"https://doi.org/10.1177/2398212820930321","url":null,"abstract":"<p><p>This review aims to synthesise a large pre-clinical and clinical literature related to a hypothesised role of the locus coeruleus norepinephrine system in responses to acute and chronic threat, as well as the emergence of pathological anxiety. The locus coeruleus has widespread norepinephrine projections throughout the central nervous system, which act to globally modulate arousal states and adaptive behavior, crucially positioned to play a significant role in modulating both ascending visceral and descending cortical neurocognitive information. In response to threat or a stressor, the locus coeruleus-norepinephrine system globally modulates arousal, alerting and orienting functions and can have a powerful effect on the regulation of multiple memory systems. Chronic stress leads to amplification of locus coeruleus reactivity to subsequent stressors, which is coupled with the emergence of pathological anxiety-like behaviors in rodents. While direct in vivo evidence for locus coeruleus dysfunction in humans with pathological anxiety remains limited, recent advances in high-resolution 7-T magnetic resonance imaging and computational modeling approaches are starting to provide new insights into locus coeruleus characteristics.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820930321"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212820930321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38403053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 79
Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations. 外侧内嗅皮层病变损害了自我中心和异中心的客体-地点联系。
Brain and neuroscience advances Pub Date : 2020-07-14 eCollection Date: 2020-01-01 DOI: 10.1177/2398212820939463
Maneesh V Kuruvilla, David I G Wilson, James A Ainge
{"title":"Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations.","authors":"Maneesh V Kuruvilla,&nbsp;David I G Wilson,&nbsp;James A Ainge","doi":"10.1177/2398212820939463","DOIUrl":"https://doi.org/10.1177/2398212820939463","url":null,"abstract":"<p><p>During navigation, landmark processing is critical either for generating an allocentric-based cognitive map or in facilitating egocentric-based strategies. Increasing evidence from manipulation and single-unit recording studies has highlighted the role of the entorhinal cortex in processing landmarks. In particular, the lateral (LEC) and medial (MEC) sub-regions of the entorhinal cortex have been shown to attend to proximal and distal landmarks, respectively. Recent studies have identified a further dissociation in cue processing between the LEC and MEC based on spatial frames of reference. Neurons in the LEC preferentially encode egocentric cues while those in the MEC encode allocentric cues. In this study, we assessed the impact of disrupting the LEC on landmark-based spatial memory in both egocentric and allocentric reference frames. Animals that received excitotoxic lesions of the LEC were significantly impaired, relative to controls, on both egocentric and allocentric versions of an object-place association task. Notably, LEC lesioned animals performed at chance on the egocentric version but above chance on the allocentric version. There was no significant difference in performance between the two groups on an object recognition and spatial T-maze task. Taken together, these results indicate that the LEC plays a role in feature integration more broadly and in specifically processing spatial information within an egocentric reference frame.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820939463"},"PeriodicalIF":0.0,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212820939463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38403057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信