{"title":"Microbial Siderophores: A New Insight on Healthcare Applications.","authors":"Shilpa Borehalli Mayegowda, Manjula Nagalapur Gadilingappa","doi":"10.34133/bmef.0112","DOIUrl":"10.34133/bmef.0112","url":null,"abstract":"<p><p>Globally, increased illness and disorders have gained importance in improvising therapeutics to help extend the lifespan of an individual. In this scenario, understanding the mechanism of bacterial pathogenicity linked to the interaction between the host and the pathogen focusing on essential metal ions is necessary. Numerous studies indicate that the severity of a disease might be due to the reduced availability of iron, linked to abnormal production or lack of acquisition systems. However, several microbes produce siderophores as virulence factors, low-molecular-weight organic compounds for acquisition of iron by iron-chelating systems. In medical applications, siderophores are employed in novel strategies in order to design effective new drugs and vaccines, targeting and delivering antibiotics to target sites in multidrug-resistant pathogens. Meanwhile, some types of siderophores are used as drug delivery modalities and antimalarial, anticancer, and antibacterial agents, for example, by employing conjugation techniques such as Trojan horse delivery. Hence, the current review integrates several applications of siderophores with an overview covering taxonomy, organisms producing iron affinity carriers, and their acquisition mechanism. This understanding may delineate newer opportunities to adapt possible therapies and/or treatments against several multidrug-resistant pathogens, representing a crucial solution for public health problems worldwide.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0112"},"PeriodicalIF":5.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2025-03-19eCollection Date: 2025-01-01DOI: 10.34133/bmef.0115
Alex T Jaffe, Roger Pallarès-López, Jeffrey K Raines, Aaron D Aguirre, Brian W Anthony
{"title":"Noninvasive Quantitative Compression Ultrasound Central Venous Pressure: A Clinical Pilot Study.","authors":"Alex T Jaffe, Roger Pallarès-López, Jeffrey K Raines, Aaron D Aguirre, Brian W Anthony","doi":"10.34133/bmef.0115","DOIUrl":"10.34133/bmef.0115","url":null,"abstract":"<p><p><b>Objective:</b> This is an initial study to validate central venous pressure (CVP) measurements derived from quantitative compression ultrasound (QCU). <b>Impact Statement:</b> This study is the first gold standard invasive validation of CVP estimation from QCU. <b>Introduction:</b> QCU finds the collapse force-the force required for complete occlusion-of the short axis of the internal jugular vein (IJV) to estimate CVP. <b>Methods:</b> We captured QCU data as well as the noninvasive clinical standard jugular venous pulsation height (JVP) on cardiac intensive care unit (CICU) patients at Massachusetts General Hospital (MGH). We compared these data to ground truth invasive CVP data from the MGH CICU. <b>Results:</b> Using linear regression, we correlated invasive CVP with collapse force (<i>r</i> <sup>2</sup>: 0.82, error: 1.08 mmHg) and with JVP (<i>r</i> <sup>2</sup>: 0.45, error: 1.39 mmHg). To directly compare our method to JVP, we measured the percentage of patients whose uncertainty estimates for QCU methods and for JVP overlapped with their invasive CVP counterparts. We found that the CVP overlap accuracy of collapse force (77.8%) and of collapse force and hydrostatic offset (88.9%) are higher than that of JVP (12.5%). Finally, we input QCU image segmentation data of the short-axis cross-sections of the IJV and carotid artery into an inverse finite element model to predict the invasive CVP waveform. <b>Conclusion:</b> These results validate the noninvasive technique for estimating CVP, namely, QCU, indicating that it may provide a desirable, middle-ground alternative to invasive catheterization and to visual inspection of the JVP.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0115"},"PeriodicalIF":5.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of CRISPR-Cas System in Human Papillomavirus Detection Using Biosensor Devices and Point-of-Care Technologies.","authors":"Chang He, Yongqi Li, Jinkuan Liu, Zhu Li, Xue Li, Jeong-Woo Choi, Heng Li, Shan Liu, Chen-Zhong Li","doi":"10.34133/bmef.0114","DOIUrl":"10.34133/bmef.0114","url":null,"abstract":"<p><p>Human papillomavirus (HPV) is the most common virus for genital tract infections. Cervical cancer ranks as the fourth most prevalent cancer globally, with over 99% of cases in women attributed to HPV infection. This infection continues to pose an ongoing threat to public health. Therefore, the development of rapid, high-throughput, and sensitive HPV detection platforms is important, especially in regions with limited access to advanced medical resources. CRISPR-based biosensors, a promising new method for nucleic acid detection, are now rapidly and widely used in basic and applied research and have received much attention in recent years for HPV diagnosis and treatment. In this review, we discuss the mechanisms and functions of the CRISPR-Cas system, focusing on its applications in HPV diagnostics. The review covers CRISPR technologies such as CRISPR-Cas9, CRISPR-Cas12, and CRISPR-Cas13, along with nucleic acid amplification methods, CRISPR-based signal output systems, and point-of-care testing (POCT) strategies. This comprehensive overview highlights the versatility and potential of CRISPR technologies in HPV detection. We also discuss the numerous CRISPR biosensors developed since the introduction of CRISPR to detect HPV. Finally, we discuss some of the challenges faced in HPV detection by the CRISPR-Cas system.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0114"},"PeriodicalIF":5.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2025-03-13eCollection Date: 2025-01-01DOI: 10.34133/bmef.0110
Zhou Fang, Kelsey Krusen, Hannah Priest, Mingshuang Wang, Sungwoong Kim, Anirudh Sriram, Ashritha Yellanki, Ankur Singh, Edwin Horwitz, Ahmet F Coskun
{"title":"Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues.","authors":"Zhou Fang, Kelsey Krusen, Hannah Priest, Mingshuang Wang, Sungwoong Kim, Anirudh Sriram, Ashritha Yellanki, Ankur Singh, Edwin Horwitz, Ahmet F Coskun","doi":"10.34133/bmef.0110","DOIUrl":"10.34133/bmef.0110","url":null,"abstract":"<p><p><b>Objective:</b> We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell-cell communication (CCC). <b>Impact Statement:</b> The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. <b>Introduction:</b> Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. <b>Methods:</b> 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. <b>Results:</b> We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC-peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte-neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence in situ hybridization (MERFISH) data and identified regional gene proximity differences. <b>Conclusion:</b> 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0110"},"PeriodicalIF":5.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143627015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2025-03-11eCollection Date: 2025-01-01DOI: 10.34133/bmef.0111
Hanfei Zhu, Ruojiang Wang, Jiajie Qian, Yuhao Wu, Zhuqing Jin, Xishen Shan, Fuhai Ji, Zixuan Yuan, Tingrui Pan
{"title":"Leveraging Large Language Models for Predicting Postoperative Acute Kidney Injury in Elderly Patients.","authors":"Hanfei Zhu, Ruojiang Wang, Jiajie Qian, Yuhao Wu, Zhuqing Jin, Xishen Shan, Fuhai Ji, Zixuan Yuan, Tingrui Pan","doi":"10.34133/bmef.0111","DOIUrl":"10.34133/bmef.0111","url":null,"abstract":"<p><p><b>Objective:</b> The objective of this work is to develop a framework based on large language models (LLMs) to predict postoperative acute kidney injury (AKI) outcomes in elderly patients. <b>Impact Statement:</b> Our study demonstrates that LLMs have the potential to address the issues of poor generalization and weak interpretability commonly encountered in disease prediction using traditional machine learning (ML) models. <b>Introduction:</b> AKI is a severe postoperative complication, especially in elderly patients with declining renal function. Current AKI prediction models rely on ML, but their lack of interpretability and generalizability limits clinical use. LLMs, with extensive pretraining and text generation capabilities, offer a new solution. <b>Methods:</b> We applied prompt engineering and knowledge distillation based on instruction fine-tuning to optimize LLMs for AKI prediction. The framework was tested on 2,649 samples from 2 private Chinese hospitals and one public South Korean dataset, which were divided into internal and external datasets. <b>Results:</b> The LLM framework showed robust external performance, with accuracy rates: commercial LLMs (internal: 63.73%, external: 68.73%), open-source LLMs (internal: 63.70%, external: 64.24%), and ML models (internal: 63.93%, external: 58.27%). LLMs also provided human-readable explanations for better clinical understanding. <b>Conclusion:</b> The proposed framework showcases the potential of LLMs to enhance generalization and interpretability in postoperative AKI prediction, paving the way for more robust and transparent predictive solutions in clinical settings.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0111"},"PeriodicalIF":5.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2025-03-11eCollection Date: 2025-01-01DOI: 10.34133/bmef.0109
Saliha Nur lIhan, Bahar Akyuz Yilmaz, Fatih Ciftci
{"title":"Functional Bacterial Cellulose-Based MXene (Ti<sub>3</sub>C<sub>2</sub>T <i><sub>x</sub></i> ) Electronic-Skin Patch for Accelerated Healing and Monitoring.","authors":"Saliha Nur lIhan, Bahar Akyuz Yilmaz, Fatih Ciftci","doi":"10.34133/bmef.0109","DOIUrl":"10.34133/bmef.0109","url":null,"abstract":"<p><p><b>Objective:</b> This study aims to develop and characterize electroactive hydrogels based on reduced bacterial cellulose (BC) and Ti<sub>3</sub>C<sub>2</sub>T <i><sub>x</sub></i> -MXene for their potential application in wound healing and real-time monitoring. <b>Impact Statement:</b> The integration of Ti<sub>3</sub>C<sub>2</sub>T <i><sub>x</sub></i> -MXene into BC matrices represents a novel approach to creating multifunctional hydrogels that combine biocompatibility, electrical conductivity, and mechanical durability. These properties make the hydrogels promising candidates for advanced wound care and real-time monitoring applications. <b>Introduction:</b> Wound healing requires materials that support cell growth, promote tissue regeneration, and enable real-time monitoring. MXenes, a class of 2-dimensional materials, offer unique electrical and mechanical properties, making them suitable for biomedical applications. This study explores the integration of Ti<sub>3</sub>C<sub>2</sub>T <i><sub>x</sub></i> -MXene with BC, a biopolymer known for its excellent biocompatibility and mechanical strength, to create electroactive composite hydrogel films for advanced wound care. <b>Methods:</b> Ti<sub>3</sub>C<sub>2</sub>T <i><sub>x</sub></i> -MXene was synthesized by etching Ti<sub>3</sub>AlC<sub>2</sub> with hydrofluoric acid and integrated into BC pellicles produced by <i>Gluconacetobacter xylinum</i>. The composite hydrogel films underwent characterization through x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) to determine structural, chemical, and thermal properties. Mechanical testing assessed tensile and compressive strengths. Biological assessments, including cell viability, hemolysis rate, and protein expression, evaluated biocompatibility and regenerative potential. <b>Results:</b> XRD confirmed the crystallographic structure of MXene and BC composite film. XPS and FTIR validated the successful incorporation of MXene into the film matrix. Composite hydrogel films demonstrated a tensile strength of 3.5 MPa and a compressive strength of 4.2 MPa. TGA showed stability up to 350 °C, and the electrical conductivity reached 9.14 × 10<sup>-4</sup> S/m, enabling real-time monitoring capabilities. Cell viability exceeded 95%, with a hemolysis rate below 2%. Protein expression studies revealed the ability to promote skin regeneration through collagen I, K10, K5, and filaggrin expression. <b>Conclusion:</b> The BC/MXene composite hydrogel films exhibit important potential as electronic-skin patches for accelerating wound healing and enabling real-time monitoring. Their unique combination of mechanical durability, electrical conductivity, and biocompatibility highlights their promise for advanced wound care applications.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0109"},"PeriodicalIF":5.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2025-03-10eCollection Date: 2025-01-01DOI: 10.34133/bmef.0102
Qiaoxuan Wang, Junzhang Ji, Ding Huang, Changyou Gao
{"title":"Biomaterials for Modulating the Immune Microenvironment in Rheumatoid Arthritis.","authors":"Qiaoxuan Wang, Junzhang Ji, Ding Huang, Changyou Gao","doi":"10.34133/bmef.0102","DOIUrl":"10.34133/bmef.0102","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint swelling and bone destruction. Despite an incomplete understanding of its genesis, RA is tightly linked to the intricate immunological milieu, involving disruptions in molecular signaling and an imbalance between the innate and adaptive immune systems. With advancements in biomaterials science, the role of biomaterials in RA treatment has evolved from mere drug delivery systems to therapeutic microenvironment modulators, providing drug-independent treatment strategies for RA. In this review, we will delve into the immune microenvironment of RA, focusing on contributions of adaptive immunity, innate immunity, damage-associated molecular patterns (DAMPs), cytokines, and signaling pathways to disease's pathogenesis and inflammation. We provide a detailed analysis of the applications of novel nonpharmaceutical biomaterials in RA treatment, categorized into 3 key mechanisms: biofactor and signaling pathway regulation, endogenous gas adjustment, and immune cell modulation. The composition, form, therapeutic principles, and treatment efficacy of these biomaterials will be explored. The thorough discussion of these topics will offer a fresh viewpoint on RA treatment strategies and guide future research directions.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0102"},"PeriodicalIF":5.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143598402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2025-03-04eCollection Date: 2025-01-01DOI: 10.34133/bmef.0104
Julia Valladares Campos, Janaína Teixeira Costa Pontes, Christian Shleider Carnero Canales, Cesar Augusto Roque-Borda, Fernando Rogério Pavan
{"title":"Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides.","authors":"Julia Valladares Campos, Janaína Teixeira Costa Pontes, Christian Shleider Carnero Canales, Cesar Augusto Roque-Borda, Fernando Rogério Pavan","doi":"10.34133/bmef.0104","DOIUrl":"10.34133/bmef.0104","url":null,"abstract":"<p><p>Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0104"},"PeriodicalIF":5.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Approach to Investigating Macrophage Polarization on Various Titanium Surface Characteristics.","authors":"Changzhong Chen, Zhenhuan Xie, Songyu Yang, Haitong Wu, Zhisheng Bi, Qing Zhang, Yin Xiao","doi":"10.34133/bmef.0100","DOIUrl":"10.34133/bmef.0100","url":null,"abstract":"<p><p><b>Objective:</b> Current laboratory studies on the effect of biomaterial properties on immune reactions are incomplete and based on a single or a few combination features of the biomaterial design. This study utilizes intelligent prediction models to explore the key features of titanium implant materials in macrophage polarization. <b>Impact Statement:</b> This pilot study provided some insights into the great potential of machine learning in exploring bone immunomodulatory biomaterials. <b>Introduction:</b> Titanium materials are commonly utilized as bone replacement materials to treat missing teeth and bone defects. The immune response caused by implant materials after implantation in the body has a double-edged sword effect on osseointegration. Macrophage polarization has been extensively explored to understand early material-mediated immunomodulation. However, understanding of implant material surface properties and immunoregulations remains limited due to current experimental settings, which are based on trial-by-trial approaches. Artificial intelligence, with its capacity to analyze large datasets, can help explore complex material-cell interactions. <b>Methods:</b> In this study, the effect of titanium surface properties on macrophage polarization was analyzed using intelligent prediction models, including random forest, extreme gradient boosting, and multilayer perceptron. Additionally, data extracted from the newly published literature were further input into the trained models to validate their performance. <b>Results:</b> The analysis identified \"cell seeding density\", \"contact angle\", and \"roughness\" as the most important features regulating interleukin 10 and tumor necrosis factor α secretion. Additionally, the predicted interleukin 10 levels closely matched the experimental results from newly published literature, while the tumor necrosis factor α predictions exhibited consistent trends. <b>Conclusion:</b> The polarization response of macrophages seeded on titanium materials is influenced by multiple factors, and artificial intelligence can assist in extracting the key features of implant materials for immunoregulation.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0100"},"PeriodicalIF":5.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct Redox Sensing of Caffeine Utilizing Zinc-Doped Tin Oxide Nanoparticles as an Electrocatalyst.","authors":"Gaurav Bhanjana, Ravinder Lamba, Manjit Singh Jadon, Neeraj Dilbaghi, Sandeep Kumar","doi":"10.34133/bmef.0099","DOIUrl":"10.34133/bmef.0099","url":null,"abstract":"<p><p><b>Objective:</b> In addition to its positive benefits, caffeine also has harmful consequences. Therefore, it is essential to ascertain its content in various substances. <b>Impact Statement:</b> The present study emphasizes a novel way of quantification of caffeine in real as well as laboratory samples based on a nanomaterial-assisted electrochemical technique. <b>Introduction:</b> Electrochemical sensing is a prominent analytical technique because of its efficiency, speed, and simple preparation and observations. Due to its low chemical potential, SnO<sub>2</sub> (tin oxide) demonstrates rapid redox reactions when used as an electrode. The presence of shielded 4f levels contributes to its distinctive optical, catalytic, and electrochemical capabilities. <b>Methods:</b> An efficient coprecipitation approach, which is simple and rapid and operates at low temperatures, is utilized to produce zinc-doped tin oxide nanoparticles (Zn-SnO<sub>2</sub> nanoparticles). Zinc doping is used to modify the optoelectronic characteristics of tin oxide nanoparticles, rendering them very efficient as electrochemical sensors. <b>Results:</b> The crystal structure of samples was analyzed using x-ray diffraction, electronic transitions were calculated using ultraviolet-visible spectroscopy, and surface morphology was analyzed using field emission scanning electron microscopy. The x-ray diffraction investigation revealed that the produced Zn-doped SnO<sub>2</sub> nanoparticles exhibit tetragonal phases, and the average size of their crystallites reduces upon doping Zn with SnO<sub>2</sub>. The bandgap energy calculated using the Tauc plot was found to be 3.77 eV. <b>Conclusion:</b> The fabricated caffeine sensor exhibits a sensitivity of 0.605 μA μM <sup>-1</sup> cm<sup>-2</sup>, and its limit of detection was found to be 3 μM.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0099"},"PeriodicalIF":5.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}