{"title":"压电调节骨质疏松症的免疫成骨。","authors":"Liyun Wang, Jialiang Zhou, Shengjie Jiang, Xiaoling Deng, Wenbin Zhang, Kaili Lin","doi":"10.34133/bmef.0146","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study aims to investigate the regulatory effects of piezoelectricity on the inflammatory microenvironment in osteoporosis treatment. <b>Impact Statement:</b> Recent studies have extensively explored the impact of piezoelectric materials on macrophage polarization and cytokine secretion. However, the effects of piezoelectricity on macrophages for the regulation of immune osteogenesis in osteoporosis remain poorly understood. This study provides novel insights into the regulatory role of piezoelectricity in macrophage modulation within osteoporotic diseases. <b>Introduction:</b> The overexpression of various inflammatory factors in osteoporosis exacerbates bone metabolism imbalance. Macrophage polarization plays a pivotal role in inflammation regulation and tissue repair. Therefore, investigating the regulatory effects of piezoelectricity on macrophage polarization is crucial for improving the inflammatory microenvironment and fostering an immune environment conducive to osteoporotic bone regeneration. <b>Methods:</b> This study fabricated polarized potassium sodium niobate ceramic (PKNN) piezoelectric bioceramics using solid-phase sintering and high-pressure polarization techniques, and investigated their regulatory effects on macrophage polarization, anti-inflammatory factor expression, and osteogenic differentiation bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX). <b>Results:</b> PKNN substantially promotes M2 macrophage polarization and enhances anti-inflammatory factor expression, effectively suppressing inflammatory responses. Further studies demonstrate that PKNN, by modulating macrophages, indirectly regulates osteoblast gene expression, improving the inhibitory effects of the pathological microenvironment on osteogenic differentiation of rBMSCs-OVX. <b>Conclusion:</b> This research provides important theoretical evidence for the development of immunomodulatory osteoporotic bone regeneration materials driven by piezoelectricity.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0146"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Piezoelectricity Regulating Immune Osteogenesis in Osteoporosis.\",\"authors\":\"Liyun Wang, Jialiang Zhou, Shengjie Jiang, Xiaoling Deng, Wenbin Zhang, Kaili Lin\",\"doi\":\"10.34133/bmef.0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> This study aims to investigate the regulatory effects of piezoelectricity on the inflammatory microenvironment in osteoporosis treatment. <b>Impact Statement:</b> Recent studies have extensively explored the impact of piezoelectric materials on macrophage polarization and cytokine secretion. However, the effects of piezoelectricity on macrophages for the regulation of immune osteogenesis in osteoporosis remain poorly understood. This study provides novel insights into the regulatory role of piezoelectricity in macrophage modulation within osteoporotic diseases. <b>Introduction:</b> The overexpression of various inflammatory factors in osteoporosis exacerbates bone metabolism imbalance. Macrophage polarization plays a pivotal role in inflammation regulation and tissue repair. Therefore, investigating the regulatory effects of piezoelectricity on macrophage polarization is crucial for improving the inflammatory microenvironment and fostering an immune environment conducive to osteoporotic bone regeneration. <b>Methods:</b> This study fabricated polarized potassium sodium niobate ceramic (PKNN) piezoelectric bioceramics using solid-phase sintering and high-pressure polarization techniques, and investigated their regulatory effects on macrophage polarization, anti-inflammatory factor expression, and osteogenic differentiation bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX). <b>Results:</b> PKNN substantially promotes M2 macrophage polarization and enhances anti-inflammatory factor expression, effectively suppressing inflammatory responses. Further studies demonstrate that PKNN, by modulating macrophages, indirectly regulates osteoblast gene expression, improving the inhibitory effects of the pathological microenvironment on osteogenic differentiation of rBMSCs-OVX. <b>Conclusion:</b> This research provides important theoretical evidence for the development of immunomodulatory osteoporotic bone regeneration materials driven by piezoelectricity.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"6 \",\"pages\":\"0146\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Piezoelectricity Regulating Immune Osteogenesis in Osteoporosis.
Objective: This study aims to investigate the regulatory effects of piezoelectricity on the inflammatory microenvironment in osteoporosis treatment. Impact Statement: Recent studies have extensively explored the impact of piezoelectric materials on macrophage polarization and cytokine secretion. However, the effects of piezoelectricity on macrophages for the regulation of immune osteogenesis in osteoporosis remain poorly understood. This study provides novel insights into the regulatory role of piezoelectricity in macrophage modulation within osteoporotic diseases. Introduction: The overexpression of various inflammatory factors in osteoporosis exacerbates bone metabolism imbalance. Macrophage polarization plays a pivotal role in inflammation regulation and tissue repair. Therefore, investigating the regulatory effects of piezoelectricity on macrophage polarization is crucial for improving the inflammatory microenvironment and fostering an immune environment conducive to osteoporotic bone regeneration. Methods: This study fabricated polarized potassium sodium niobate ceramic (PKNN) piezoelectric bioceramics using solid-phase sintering and high-pressure polarization techniques, and investigated their regulatory effects on macrophage polarization, anti-inflammatory factor expression, and osteogenic differentiation bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX). Results: PKNN substantially promotes M2 macrophage polarization and enhances anti-inflammatory factor expression, effectively suppressing inflammatory responses. Further studies demonstrate that PKNN, by modulating macrophages, indirectly regulates osteoblast gene expression, improving the inhibitory effects of the pathological microenvironment on osteogenic differentiation of rBMSCs-OVX. Conclusion: This research provides important theoretical evidence for the development of immunomodulatory osteoporotic bone regeneration materials driven by piezoelectricity.