BME frontiersPub Date : 2022-01-29eCollection Date: 2022-01-01DOI: 10.34133/2022/9807347
Juan Tu, Alfred C H Yu
{"title":"Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors.","authors":"Juan Tu, Alfred C H Yu","doi":"10.34133/2022/9807347","DOIUrl":"10.34133/2022/9807347","url":null,"abstract":"<p><p>Sonoporation, or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation, is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells. Nevertheless, this emerging drug delivery paradigm has not yet reached widespread clinical use, because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms. Here, we summarize the current observational evidence available on the notion of sonoporation, and we discuss the prevailing understanding of the physical and biological processes related to sonoporation. To facilitate systematic understanding, we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters (ultrasound frequency, pressure, cavitation dose, exposure time), microbubble parameters (size, concentration, bubble-to-cell distance, shell composition), and cellular properties (cell type, cell cycle, biochemical contents). By adopting a science-backed approach to the realization of sonoporation, ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency. This drug delivery approach, when coupled with concurrent advances in ultrasound imaging, has potential to become an effective therapeutic paradigm.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9807347"},"PeriodicalIF":5.0,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2022-01-09eCollection Date: 2022-01-01DOI: 10.34133/2022/9783128
Angela Zhang, Amil Khan, Saisidharth Majeti, Judy Pham, Christopher Nguyen, Peter Tran, Vikram Iyer, Ashutosh Shelat, Jefferson Chen, B S Manjunath
{"title":"Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus.","authors":"Angela Zhang, Amil Khan, Saisidharth Majeti, Judy Pham, Christopher Nguyen, Peter Tran, Vikram Iyer, Ashutosh Shelat, Jefferson Chen, B S Manjunath","doi":"10.34133/2022/9783128","DOIUrl":"10.34133/2022/9783128","url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. We propose an automated method of predicting Normal Pressure Hydrocephalus (NPH) from CT scans. A deep convolutional network segments regions of interest from the scans. These regions are then combined with MRI information to predict NPH. To our knowledge, this is the first method which automatically predicts NPH from CT scans and incorporates diffusion tractography information for prediction. <i>Introduction</i>. Due to their low cost and high versatility, CT scans are often used in NPH diagnosis. No well-defined and effective protocol currently exists for analysis of CT scans for NPH. Evans' index, an approximation of the ventricle to brain volume using one 2D image slice, has been proposed but is not robust. The proposed approach is an effective way to quantify regions of interest and offers a computational method for predicting NPH. <i>Methods</i>. We propose a novel method to predict NPH by combining regions of interest segmented from CT scans with connectome data to compute features which capture the impact of enlarged ventricles by excluding fiber tracts passing through these regions. The segmentation and network features are used to train a model for NPH prediction. <i>Results</i>. Our method outperforms the current state-of-the-art by 9 precision points and 29 recall points. Our segmentation model outperforms the current state-of-the-art in segmenting the ventricle, gray-white matter, and subarachnoid space in CT scans. <i>Conclusion</i>. Our experimental results demonstrate that fast and accurate volumetric segmentation of CT brain scans can help improve the NPH diagnosis process, and network properties can increase NPH prediction accuracy.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9783128"},"PeriodicalIF":0.0,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2022-01-01DOI: 10.34133/2022/9891510
Qiangzhou Rong, Youngseop Lee, Yuqi Tang, Tri Vu, Carlos Taboada, Wenhan Zheng, Jun Xia, David A Czaplewski, Hao F Zhang, Cheng Sun, Junjie Yao
{"title":"High-Frequency 3D Photoacoustic Computed Tomography Using an Optical Microring Resonator.","authors":"Qiangzhou Rong, Youngseop Lee, Yuqi Tang, Tri Vu, Carlos Taboada, Wenhan Zheng, Jun Xia, David A Czaplewski, Hao F Zhang, Cheng Sun, Junjie Yao","doi":"10.34133/2022/9891510","DOIUrl":"https://doi.org/10.34133/2022/9891510","url":null,"abstract":"<p><p>3D photoacoustic computed tomography (3D-PACT) has made great advances in volumetric imaging of biological tissues, with high spatial-temporal resolutions and large penetration depth. The development of 3D-PACT requires high-performance acoustic sensors with a small size, large detection bandwidth, and high sensitivity. In this work, we present a new high-frequency 3D-PACT system that uses a micro-ring resonator (MRR) as the acoustic sensor. The MRR sensor has a size of 80 μm in diameter, and was fabricated using the nanoimprint lithography technology. Using the MRR sensor, we have developed a transmission-mode 3D-PACT system that has achieved a detection bandwidth of ~23 MHz, an imaging depth of ~8 mm, a lateral resolution of 114 μm, and an axial resolution of 57 μm. We have demonstrated the 3D PACT's performance on <i>in vitro</i> phantoms, <i>ex vivo</i> mouse brain, and <i>in vivo</i> mouse ear and tadpole. The MRR-based 3D-PACT system can be a promising tool for structural, functional, and molecular imaging of biological tissues at depths.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9563638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2022-01-01DOI: 10.34133/2022/9868673
Michael Miller, Daniel Tward, Alain Trouvé
{"title":"Molecular Computational Anatomy: Unifying the Particle to Tissue Continuum via Measure Representations of the Brain.","authors":"Michael Miller, Daniel Tward, Alain Trouvé","doi":"10.34133/2022/9868673","DOIUrl":"https://doi.org/10.34133/2022/9868673","url":null,"abstract":"<p><strong>Objective: </strong>The objective of this research is to unify the molecular representations of spatial transcriptomics and cellular scale histology with the tissue scales of computational anatomy for brain mapping.</p><p><strong>Impact statement: </strong>We present a unified representation theory for brain mapping based on geometric varifold measures of the microscale deterministic structure and function with the statistical ensembles of the spatially aggregated tissue scales.</p><p><strong>Introduction: </strong>Mapping across coordinate systems in computational anatomy allows us to understand structural and functional properties of the brain at the millimeter scale. New measurement technologies in digital pathology and spatial transcriptomics allow us to measure the brain molecule by molecule and cell by cell based on protein and transcriptomic functional identity. We currently have no mathematical representations for integrating consistently the tissue limits with the molecular particle descriptions. The formalism derived here demonstrates the methodology for transitioning consistently from the molecular scale of quantized particles-using mathematical structures as first introduced by Dirac as the class of generalized functions-to the tissue scales with methods originally introduced by Euler for fluids.</p><p><strong>Methods: </strong>We introduce two mathematical methods based on notions of generalized functions and statistical mechanics. We use geometric varifolds, a product measure on space and function, to represent functional states at the micro-scales-electrophysiology, molecular histology-integrated with a Boltzmann-like program to pass from deterministic particle descriptions to empirical probabilities on the functional states at the tissue scales.</p><p><strong>Results: </strong>Our space-function varifold representation provides a recipe for traversing from molecular to tissue scales in terms of a cascade of linear space scaling composed with nonlinear functional feature mapping. Following the cascade implies every scale is a geometric measure so that a universal family of measure norms can be introduced which quantifies the geodesic connection between brains in the orbit independent of the probing technology, whether it be RNA identities, Tau or amyloid histology, spike trains, or dense MR imagery.</p><p><strong>Conclusions: </strong>We demonstrate a unified brain mapping theory for molecular and tissue scales based on geometric measure representations. We call the consistent aggregation of tissue scales from particle and cellular scales, molecular computational anatomy.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9852817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2022-01-01DOI: 10.34133/2022/9780173
Lingyi Zhao, Muyinatu A Lediju Bell
{"title":"A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients.","authors":"Lingyi Zhao, Muyinatu A Lediju Bell","doi":"10.34133/2022/9780173","DOIUrl":"https://doi.org/10.34133/2022/9780173","url":null,"abstract":"<p><p>The massive and continuous spread of COVID-19 has motivated researchers around the world to intensely explore, understand, and develop new techniques for diagnosis and treatment. Although lung ultrasound imaging is a less established approach when compared to other medical imaging modalities such as X-ray and CT, multiple studies have demonstrated its promise to diagnose COVID-19 patients. At the same time, many deep learning models have been built to improve the diagnostic efficiency of medical imaging. The integration of these initially parallel efforts has led multiple researchers to report deep learning applications in medical imaging of COVID-19 patients, most of which demonstrate the outstanding potential of deep learning to aid in the diagnosis of COVID-19. This invited review is focused on deep learning applications in lung ultrasound imaging of COVID-19 and provides a comprehensive overview of ultrasound systems utilized for data acquisition, associated datasets, deep learning models, and comparative performance.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10646829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2022-01-01Epub Date: 2022-06-30DOI: 10.34133/2022/9870386
Robert Wodnicki, Haochen Kang, Di Li, Douglas N Stephens, Hayong Jung, Yizhe Sun, Ruimin Chen, Lai-Ming Jiang, Nestor E Cabrera-Munoz, Josquin Foiret, Qifa Zhou, Katherine W Ferrara
{"title":"Highly Integrated Multiplexing and Buffering Electronics for Large Aperture Ultrasonic Arrays.","authors":"Robert Wodnicki, Haochen Kang, Di Li, Douglas N Stephens, Hayong Jung, Yizhe Sun, Ruimin Chen, Lai-Ming Jiang, Nestor E Cabrera-Munoz, Josquin Foiret, Qifa Zhou, Katherine W Ferrara","doi":"10.34133/2022/9870386","DOIUrl":"10.34133/2022/9870386","url":null,"abstract":"<p><p>Large aperture ultrasonic arrays can be implemented by tiling together multiple pretested modules of high-density acoustic arrays with closely integrated multiplexing and buffering electronics to form a larger aperture with high yield. These modular arrays can be used to implement large 1.75D array apertures capable of focusing in elevation for uniform slice thickness along the axial direction which can improve image contrast. An important goal for large array tiling is obtaining high yield and sensitivity while reducing extraneous image artifacts. We have been developing tileable acoustic-electric modules for the implementation of large array apertures utilizing Application Specific Integrated Circuits (ASICs) implemented using 0.35 <b><i>μ</i></b> m high voltage (50 V) CMOS. Multiple generations of ASICs have been designed and tested. The ASICs were integrated with high-density transducer arrays for acoustic testing and imaging. The modules were further interfaced to a Verasonics Vantage imaging system and were used to image industry standard ultrasound phantoms. The first-generation modules comprise ASICs with both multiplexing and buffering electronics on-chip and have demonstrated a switching artifact which was visible in the images. A second-generation ASIC design incorporates low switching injection circuits which effectively mitigate the artifacts observed with the first-generation devices. Here, we present the architecture of the two ASIC designs and module types as well imaging results that demonstrate reduction in switching artifacts for the second-generation devices.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9357820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2022-01-01DOI: 10.34133/2022/9847952
Dima Raskolnikov, Michael R Bailey, Jonathan D Harper
{"title":"Recent Advances in the Science of Burst Wave Lithotripsy and Ultrasonic Propulsion.","authors":"Dima Raskolnikov, Michael R Bailey, Jonathan D Harper","doi":"10.34133/2022/9847952","DOIUrl":"https://doi.org/10.34133/2022/9847952","url":null,"abstract":"<p><p>Nephrolithiasis is a common, painful condition that requires surgery in many patients whose stones do not pass spontaneously. Recent technologic advances have enabled the use of ultrasonic propulsion to reposition stones within the urinary tract, either to relieve symptoms or facilitate treatment. Burst wave lithotripsy (BWL) has emerged as a noninvasive technique to fragment stones in awake patients without significant pain or renal injury. We review the preclinical and human studies that have explored the use of these two technologies. We envision that BWL will fill an unmet need for the noninvasive treatment of patients with nephrolithiasis.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9381331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2021-11-22DOI: 10.1101/2021.11.22.469463
Joshua Peeples, Julie F. Jameson, Nisha M Kotta, J. Grasman, W. Stoppel, A. Zare
{"title":"Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA) for Adipose Tissue Segmentation","authors":"Joshua Peeples, Julie F. Jameson, Nisha M Kotta, J. Grasman, W. Stoppel, A. Zare","doi":"10.1101/2021.11.22.469463","DOIUrl":"https://doi.org/10.1101/2021.11.22.469463","url":null,"abstract":"Objective We quantify adipose tissue deposition at surgical sites as a function of biomaterial implantation. Impact Statement To our knowledge, this study is the first investigation to apply convolutional neural network (CNN) models to identify and segment adipose tissue in histological images from silk fibroin biomaterial implants. Introduction When designing biomaterials for the treatment of various soft tissue injuries and diseases, one must consider the extent of adipose tissue deposition. In this work, we implant silk fibroin biomaterials in a rodent subcutaneous injury model. Current strategies for quantifying adipose tissue after biomaterial implantation are often tedious and prone to human bias during analysis. Methods We used CNN models with novel spatial histogram layer(s) that can more accurately identify and segment regions of adipose tissue in hematoxylin and eosin (H&E) and Masson’s Trichrome stained images, allowing for determination of the optimal biomaterial formulation. We compared the method, Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA), to the baseline UNET model and an extension of the baseline model, Attention UNET, as well as to versions of the models with a supplemental “attention”-inspired mechanism (JOSHUA+ and UNET+). Results The inclusion of histogram layer(s) in our models shows improved performance through qualitative and quantitative evaluation. Conclusion Our results demonstrate that the proposed methods, JOSHUA and JOSHUA+, are highly beneficial for adipose tissue identification and localization. The new histological dataset and code for our experiments are publicly available.","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81634703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2021-11-13DOI: 10.1101/2021.11.10.467798
Zhijie Dong, Jihun Kim, Chengwu Huang, Matthew R. Lowerison, Shigao Chen, P. Song
{"title":"Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array","authors":"Zhijie Dong, Jihun Kim, Chengwu Huang, Matthew R. Lowerison, Shigao Chen, P. Song","doi":"10.1101/2021.11.10.467798","DOIUrl":"https://doi.org/10.1101/2021.11.10.467798","url":null,"abstract":"Objective To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement The proposed method paves the way for clinical translation of 3D-SWE based on the 2D RCA, providing a low-cost and high volume-rate solution that is compatible with existing clinical systems. Introduction SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame-rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume-rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods A 3D SWE method using a 2D RCA array was developed with a volume-rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms. Results 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for both homogeneous and heterogeneous phantoms with inclusions. Conclusion The high volume-rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"279 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86378560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BME frontiersPub Date : 2021-11-11DOI: 10.1101/2021.11.09.467971
Haoyang Chen, S. Agrawal, Mohamed Osman, Josiah Minotto, Shubham Mirg, Jinyun Liu, Ajay Dangi, Quyen Tran, Thomas Jackson, Sri-Rajasekhar Kothapalli
{"title":"A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging","authors":"Haoyang Chen, S. Agrawal, Mohamed Osman, Josiah Minotto, Shubham Mirg, Jinyun Liu, Ajay Dangi, Quyen Tran, Thomas Jackson, Sri-Rajasekhar Kothapalli","doi":"10.1101/2021.11.09.467971","DOIUrl":"https://doi.org/10.1101/2021.11.09.467971","url":null,"abstract":"Objective and Impact Statement Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction Currently, combining ultrasound, photoacoustic and optical imaging modalities is challenging because con-ventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to co-align both optical and ultrasound waves in the same field of view. Methods One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) liner array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results The TUT array consisted of 64 elements and centered at ∼ 6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic and fluorescence imaging in real-time using the TUT array directly coupled to the tissue mimicking phantoms. Conclusion The TUT array successfully showed a multimodal imaging capability, and has potential applications in diagnosing cancer, neuro and vascular diseases, including image-guided endoscopy and wearable imaging.","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83425455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}