BMC biomedical engineeringPub Date : 2020-05-28eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00041-5
Bassam A Masri, Andrew Eisen, Clive P Duncan, James A McEwen
{"title":"Tourniquet-induced nerve compression injuries are caused by high pressure levels and gradients - a review of the evidence to guide safe surgical, pre-hospital and blood flow restriction usage.","authors":"Bassam A Masri, Andrew Eisen, Clive P Duncan, James A McEwen","doi":"10.1186/s42490-020-00041-5","DOIUrl":"https://doi.org/10.1186/s42490-020-00041-5","url":null,"abstract":"<p><p>Tourniquets in orthopaedic surgery safely provide blood free surgical fields, but their use is not without risk. Tourniquets can result in temporary or permanent injury to underlying nerves, muscles, blood vessels and soft tissues. Advances in safety, accuracy and reliability of surgical tourniquet systems have reduced nerve-related injuries by reducing pressure levels and pressure gradients, but that may have resulted in reduced awareness of potential injury mechanisms. Short-term use of pre-hospital tourniquets is effective in preventing life-threatening blood loss, but a better understanding of the differences between tourniquets designed for pre-hospital vs surgical use will provide a framework around which to develop guidelines for admitting to hospital individuals with pre-applied tourniquets. Recent evidence supports the application of tourniquets for blood flow restriction (BFR) therapy to reduce muscular atrophy, increase muscle strength, and stimulate bone growth. BFR therapy when appropriately prescribed can augment a surgeon's treatment plan, improving patient outcomes and reducing recovery time. Key risks, hazards, and mechanisms of injury for surgical, BFR therapy, and pre-hospital tourniquet use are identified, and a description is given of how advances in personalized tourniquet systems have reduced tourniquet-related injuries in these broader settings, increasing patient safety and how these advances are improving treatment outcomes.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00041-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38357694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-04-30eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00040-6
Mallory D Griffin, Sean R Pereira, Megan K DeBari, Rosalyn D Abbott
{"title":"Mechanisms of action, chemical characteristics, and model systems of obesogens.","authors":"Mallory D Griffin, Sean R Pereira, Megan K DeBari, Rosalyn D Abbott","doi":"10.1186/s42490-020-00040-6","DOIUrl":"10.1186/s42490-020-00040-6","url":null,"abstract":"<p><p>There is increasing evidence for the role of environmental endocrine disrupting contaminants, coined obesogens, in exacerbating the rising obesity epidemic. Obesogens can be found in everyday items ranging from pesticides to food packaging. Although research shows that obesogens can have effects on adipocyte size, phenotype, metabolic activity, and hormone levels, much remains unknown about these chemicals. This review will discuss what is currently known about the mechanisms of obesogens, including expression of the PPARs, hormone interference, and inflammation. Strategies for identifying obesogenic chemicals and their mechanisms through chemical characteristics and model systems will also be discussed. Ultimately, research should focus on improving models to discern precise mechanisms of obesogenic action and to test therapeutics targeting these mechanisms.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-03-23eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00039-z
John H Challis
{"title":"Quaternions as a solution to determining the angular kinematics of human movement.","authors":"John H Challis","doi":"10.1186/s42490-020-00039-z","DOIUrl":"https://doi.org/10.1186/s42490-020-00039-z","url":null,"abstract":"<p><p>The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated. The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion, <i>q</i> = (<i>q</i> <sub>0</sub>, <i>q</i> <sub>1</sub>, <i>q</i> <sub>2</sub>, <i>q</i> <sub>3</sub>), can be considered a rotation (Ω = 2 cos<sup>-1</sup>(<i>q</i> <sub>0</sub>)), about an axis defined by a unit direction vector <math> <mfenced> <mrow><msub><mi>q</mi> <mn>1</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> <mrow><msub><mi>q</mi> <mn>2</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> <mrow><msub><mi>q</mi> <mn>3</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> </mfenced> <mspace></mspace></math> . The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman's paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed. The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00039-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-02-27eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-0038-4
Kaitlyn R Ammann, Touhid Ahamed, Alice L Sweedo, Roozbeh Ghaffari, Yonatan E Weiner, Rebecca C Slepian, Hongki Jo, Marvin J Slepian
{"title":"Human motion component and envelope characterization via wireless wearable sensors.","authors":"Kaitlyn R Ammann, Touhid Ahamed, Alice L Sweedo, Roozbeh Ghaffari, Yonatan E Weiner, Rebecca C Slepian, Hongki Jo, Marvin J Slepian","doi":"10.1186/s42490-020-0038-4","DOIUrl":"10.1186/s42490-020-0038-4","url":null,"abstract":"<p><strong>Background: </strong>The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal \"pattern\" of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm.</p><p><strong>Results: </strong>Each of the three motion regimes studied had a distinct pattern - with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a \"motion envelope,\" defining and quantifying motion (range and shape - including the outer perimeter of the extreme of motion - i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer.</p><p><strong>Conclusions: </strong>A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital \"motion biomarkers\" of health and disease.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0038-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A deep error correction network for compressed sensing MRI.","authors":"Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley","doi":"10.1186/s42490-020-0037-5","DOIUrl":"10.1186/s42490-020-0037-5","url":null,"abstract":"<p><strong>Background: </strong>CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.</p><p><strong>Results: </strong>In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.</p><p><strong>Conclusions: </strong>In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0037-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-01-29eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-0036-6
Marisa Graser, Sarah Day, Arjan Buis
{"title":"Exploring the role of transtibial prosthetic use in deep tissue injury development: a scoping review.","authors":"Marisa Graser, Sarah Day, Arjan Buis","doi":"10.1186/s42490-020-0036-6","DOIUrl":"10.1186/s42490-020-0036-6","url":null,"abstract":"<p><strong>Background: </strong>The soft tissue of the residual limb in transtibial prosthetic users encounters unique biomechanical challenges. Although not intended to tolerate high loads and deformation, it becomes a weight-bearing structure within the residuum-prosthesis-complex. Consequently, deep soft tissue layers may be damaged, resulting in Deep Tissue Injury (DTI). Whilst considerable effort has gone into DTI research on immobilised individuals, only little is known about the aetiology and population-specific risk factors in amputees. This scoping review maps out and critically appraises existing research on DTI in lower-limb prosthetic users according to (1) the population-specific aetiology, (2) risk factors, and (3) methodologies to investigate both.</p><p><strong>Results: </strong>A systematic search within the databases Pubmed, Ovid Excerpta Medica, and Scopus identified 16 English-language studies. The results indicate that prosthetic users may be at risk for DTI during various loading scenarios. This is influenced by individual surgical, morphological, and physiological determinants, as well as the choice of prosthetic componentry. However, methodological limitations, high inter-patient variability, and small sample sizes complicate the interpretation of outcome measures. Additionally, fundamental research on cell and tissue reactions to dynamic loading and on prosthesis-induced alterations of the vascular and lymphatic supply is missing.</p><p><strong>Conclusion: </strong>We therefore recommend increased interdisciplinary research endeavours with a focus on prosthesis-related experimental design to widen our understanding of DTI. The results have the potential to initiate much-needed clinical advances in surgical and prosthetic practice and inform future pressure ulcer classifications and guidelines.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-01-08eCollection Date: 2020-01-01DOI: 10.1186/s42490-019-0035-7
Mathieu Lalumiere, Cloé Villeneuve, Cassandra Bellavance, Michel Goyette, Daniel Bourbonnais
{"title":"Patterns of lower limb muscular activity and joint moments during directional efforts using a static dynamometer.","authors":"Mathieu Lalumiere, Cloé Villeneuve, Cassandra Bellavance, Michel Goyette, Daniel Bourbonnais","doi":"10.1186/s42490-019-0035-7","DOIUrl":"https://doi.org/10.1186/s42490-019-0035-7","url":null,"abstract":"<p><strong>Background: </strong>Strength and coordination of lower muscle groups typically identified in healthy subjects are two prerequisites to performing functional activities. These physical qualities can be impaired following a neurological insult. A static dynamometer apparatus that measures lower limb joint moments during directional efforts at the foot was developed to recruit different patterns of muscular activity. The objectives of the present study were to 1) validate joint moments estimated by the apparatus, and 2) to characterize lower limb joint moments and muscular activity patterns of healthy subjects during progressive static efforts. Subjects were seated in a semi-reclined position with one foot attached to a force platform interfaced with a laboratory computer. Forces and moments exerted under the foot were computed using inverse dynamics, allowing for the estimation of lower limb joint moments.To achieve the study's first objective, joint moments were validated by comparing moments of various magnitudes of force applied by turnbuckles on an instrumented leg equipped with strain gauges with those estimated by the apparatus. Concurrent validity and agreement were assessed using Pearson correlation coefficients and Bland and Altman analysis, respectively. For the second objective, joint moments and muscular activity were characterized for five healthy subjects while exerting progressive effort in eight sagittal directions. Lower limb joint moments were estimated during directional efforts using inverse dynamics. Muscular activity of eight muscles of the lower limb was recorded using surface electrodes and further analyzed using normalized root mean square data.</p><p><strong>Results: </strong>The joint moments estimated with the instrumented leg were correlated (r > 0.999) with those measured by the dynamometer. Limits of agreement ranged between 8.5 and 19.2% of the average joint moment calculated by both devices. During progressive efforts on the apparatus, joint moments and patterns of muscular activity were specific to the direction of effort. Patterns of muscular activity in four directions were similar to activation patterns reported in the literature for specific portions of gait cycle.</p><p><strong>Conclusion: </strong>This apparatus provides valid joint moments exerted at the lower limbs. It is suggested that this methodology be used to recruit muscular activity patterns impaired in neurological populations.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0035-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-12-20eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0034-8
Kimberly J Ornell, Jeannine M Coburn
{"title":"Developing preclinical models of neuroblastoma: driving therapeutic testing.","authors":"Kimberly J Ornell, Jeannine M Coburn","doi":"10.1186/s42490-019-0034-8","DOIUrl":"https://doi.org/10.1186/s42490-019-0034-8","url":null,"abstract":"<p><p>Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40-50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0034-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-12-11eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0033-9
Sylvia Müller, Lyndsey Nicholson, Naif Al Harbi, Elena Mancuso, Elena Jones, Anne Dickinson, Xiao Nong Wang, Kenneth Dalgarno
{"title":"Correction to: Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds.","authors":"Sylvia Müller, Lyndsey Nicholson, Naif Al Harbi, Elena Mancuso, Elena Jones, Anne Dickinson, Xiao Nong Wang, Kenneth Dalgarno","doi":"10.1186/s42490-019-0033-9","DOIUrl":"https://doi.org/10.1186/s42490-019-0033-9","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1186/s42490-019-0015-y.].</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0033-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2019-12-09eCollection Date: 2019-01-01DOI: 10.1186/s42490-019-0032-x
Stergios Verros, Laura Peeters, Arjen Bergsma, Edsko E G Hekman, Gijsbertus J Verkerke, Bart F J M Koopman
{"title":"Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study.","authors":"Stergios Verros, Laura Peeters, Arjen Bergsma, Edsko E G Hekman, Gijsbertus J Verkerke, Bart F J M Koopman","doi":"10.1186/s42490-019-0032-x","DOIUrl":"https://doi.org/10.1186/s42490-019-0032-x","url":null,"abstract":"<p><strong>Background: </strong>Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.</p><p><strong>Results: </strong>The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"31"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0032-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38456101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}