BMC biomedical engineering最新文献

筛选
英文 中文
Quaternions as a solution to determining the angular kinematics of human movement. 四元数作为确定人体运动角运动学的一种解决方案。
BMC biomedical engineering Pub Date : 2020-03-23 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-020-00039-z
John H Challis
{"title":"Quaternions as a solution to determining the angular kinematics of human movement.","authors":"John H Challis","doi":"10.1186/s42490-020-00039-z","DOIUrl":"https://doi.org/10.1186/s42490-020-00039-z","url":null,"abstract":"<p><p>The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated. The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion, <i>q</i> = (<i>q</i> <sub>0</sub>, <i>q</i> <sub>1</sub>, <i>q</i> <sub>2</sub>, <i>q</i> <sub>3</sub>), can be considered a rotation (Ω = 2 cos<sup>-1</sup>(<i>q</i> <sub>0</sub>)), about an axis defined by a unit direction vector <math> <mfenced> <mrow><msub><mi>q</mi> <mn>1</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> <mrow><msub><mi>q</mi> <mn>2</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> <mrow><msub><mi>q</mi> <mn>3</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> </mfenced> <mspace></mspace></math> . The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman's paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed. The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00039-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Human motion component and envelope characterization via wireless wearable sensors. 通过无线可穿戴传感器的人体运动成分和包络表征。
BMC biomedical engineering Pub Date : 2020-02-27 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-020-0038-4
Kaitlyn R Ammann, Touhid Ahamed, Alice L Sweedo, Roozbeh Ghaffari, Yonatan E Weiner, Rebecca C Slepian, Hongki Jo, Marvin J Slepian
{"title":"Human motion component and envelope characterization via wireless wearable sensors.","authors":"Kaitlyn R Ammann, Touhid Ahamed, Alice L Sweedo, Roozbeh Ghaffari, Yonatan E Weiner, Rebecca C Slepian, Hongki Jo, Marvin J Slepian","doi":"10.1186/s42490-020-0038-4","DOIUrl":"10.1186/s42490-020-0038-4","url":null,"abstract":"<p><strong>Background: </strong>The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal \"pattern\" of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm.</p><p><strong>Results: </strong>Each of the three motion regimes studied had a distinct pattern - with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a \"motion envelope,\" defining and quantifying motion (range and shape - including the outer perimeter of the extreme of motion - i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer.</p><p><strong>Conclusions: </strong>A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital \"motion biomarkers\" of health and disease.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0038-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A deep error correction network for compressed sensing MRI. 压缩感知MRI的深度误差校正网络。
BMC biomedical engineering Pub Date : 2020-02-27 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-020-0037-5
Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley
{"title":"A deep error correction network for compressed sensing MRI.","authors":"Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley","doi":"10.1186/s42490-020-0037-5","DOIUrl":"10.1186/s42490-020-0037-5","url":null,"abstract":"<p><strong>Background: </strong>CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.</p><p><strong>Results: </strong>In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.</p><p><strong>Conclusions: </strong>In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0037-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Exploring the role of transtibial prosthetic use in deep tissue injury development: a scoping review. 探讨经胫骨假体在深部组织损伤发展中的作用:范围综述。
BMC biomedical engineering Pub Date : 2020-01-29 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-020-0036-6
Marisa Graser, Sarah Day, Arjan Buis
{"title":"Exploring the role of transtibial prosthetic use in deep tissue injury development: a scoping review.","authors":"Marisa Graser, Sarah Day, Arjan Buis","doi":"10.1186/s42490-020-0036-6","DOIUrl":"10.1186/s42490-020-0036-6","url":null,"abstract":"<p><strong>Background: </strong>The soft tissue of the residual limb in transtibial prosthetic users encounters unique biomechanical challenges. Although not intended to tolerate high loads and deformation, it becomes a weight-bearing structure within the residuum-prosthesis-complex. Consequently, deep soft tissue layers may be damaged, resulting in Deep Tissue Injury (DTI). Whilst considerable effort has gone into DTI research on immobilised individuals, only little is known about the aetiology and population-specific risk factors in amputees. This scoping review maps out and critically appraises existing research on DTI in lower-limb prosthetic users according to (1) the population-specific aetiology, (2) risk factors, and (3) methodologies to investigate both.</p><p><strong>Results: </strong>A systematic search within the databases Pubmed, Ovid Excerpta Medica, and Scopus identified 16 English-language studies. The results indicate that prosthetic users may be at risk for DTI during various loading scenarios. This is influenced by individual surgical, morphological, and physiological determinants, as well as the choice of prosthetic componentry. However, methodological limitations, high inter-patient variability, and small sample sizes complicate the interpretation of outcome measures. Additionally, fundamental research on cell and tissue reactions to dynamic loading and on prosthesis-induced alterations of the vascular and lymphatic supply is missing.</p><p><strong>Conclusion: </strong>We therefore recommend increased interdisciplinary research endeavours with a focus on prosthesis-related experimental design to widen our understanding of DTI. The results have the potential to initiate much-needed clinical advances in surgical and prosthetic practice and inform future pressure ulcer classifications and guidelines.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of lower limb muscular activity and joint moments during directional efforts using a static dynamometer. 使用静态测功仪测量定向用力时下肢肌肉活动和关节力矩的模式。
BMC biomedical engineering Pub Date : 2020-01-08 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-019-0035-7
Mathieu Lalumiere, Cloé Villeneuve, Cassandra Bellavance, Michel Goyette, Daniel Bourbonnais
{"title":"Patterns of lower limb muscular activity and joint moments during directional efforts using a static dynamometer.","authors":"Mathieu Lalumiere,&nbsp;Cloé Villeneuve,&nbsp;Cassandra Bellavance,&nbsp;Michel Goyette,&nbsp;Daniel Bourbonnais","doi":"10.1186/s42490-019-0035-7","DOIUrl":"https://doi.org/10.1186/s42490-019-0035-7","url":null,"abstract":"<p><strong>Background: </strong>Strength and coordination of lower muscle groups typically identified in healthy subjects are two prerequisites to performing functional activities. These physical qualities can be impaired following a neurological insult. A static dynamometer apparatus that measures lower limb joint moments during directional efforts at the foot was developed to recruit different patterns of muscular activity. The objectives of the present study were to 1) validate joint moments estimated by the apparatus, and 2) to characterize lower limb joint moments and muscular activity patterns of healthy subjects during progressive static efforts. Subjects were seated in a semi-reclined position with one foot attached to a force platform interfaced with a laboratory computer. Forces and moments exerted under the foot were computed using inverse dynamics, allowing for the estimation of lower limb joint moments.To achieve the study's first objective, joint moments were validated by comparing moments of various magnitudes of force applied by turnbuckles on an instrumented leg equipped with strain gauges with those estimated by the apparatus. Concurrent validity and agreement were assessed using Pearson correlation coefficients and Bland and Altman analysis, respectively. For the second objective, joint moments and muscular activity were characterized for five healthy subjects while exerting progressive effort in eight sagittal directions. Lower limb joint moments were estimated during directional efforts using inverse dynamics. Muscular activity of eight muscles of the lower limb was recorded using surface electrodes and further analyzed using normalized root mean square data.</p><p><strong>Results: </strong>The joint moments estimated with the instrumented leg were correlated (r > 0.999) with those measured by the dynamometer. Limits of agreement ranged between 8.5 and 19.2% of the average joint moment calculated by both devices. During progressive efforts on the apparatus, joint moments and patterns of muscular activity were specific to the direction of effort. Patterns of muscular activity in four directions were similar to activation patterns reported in the literature for specific portions of gait cycle.</p><p><strong>Conclusion: </strong>This apparatus provides valid joint moments exerted at the lower limbs. It is suggested that this methodology be used to recruit muscular activity patterns impaired in neurological populations.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0035-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Developing preclinical models of neuroblastoma: driving therapeutic testing. 发展神经母细胞瘤的临床前模型:推动治疗试验。
BMC biomedical engineering Pub Date : 2019-12-20 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0034-8
Kimberly J Ornell, Jeannine M Coburn
{"title":"Developing preclinical models of neuroblastoma: driving therapeutic testing.","authors":"Kimberly J Ornell,&nbsp;Jeannine M Coburn","doi":"10.1186/s42490-019-0034-8","DOIUrl":"https://doi.org/10.1186/s42490-019-0034-8","url":null,"abstract":"<p><p>Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40-50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0034-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Correction to: Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds. 更正:在磷灰石-硅灰石3D支架上培养的异质性和富含cd271的间充质间质细胞的成骨潜能。
BMC biomedical engineering Pub Date : 2019-12-11 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0033-9
Sylvia Müller, Lyndsey Nicholson, Naif Al Harbi, Elena Mancuso, Elena Jones, Anne Dickinson, Xiao Nong Wang, Kenneth Dalgarno
{"title":"Correction to: Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds.","authors":"Sylvia Müller,&nbsp;Lyndsey Nicholson,&nbsp;Naif Al Harbi,&nbsp;Elena Mancuso,&nbsp;Elena Jones,&nbsp;Anne Dickinson,&nbsp;Xiao Nong Wang,&nbsp;Kenneth Dalgarno","doi":"10.1186/s42490-019-0033-9","DOIUrl":"https://doi.org/10.1186/s42490-019-0033-9","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1186/s42490-019-0015-y.].</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0033-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study. 探索杜氏肌萎缩症患者主动躯干支持的生理信号:一个案例研究。
BMC biomedical engineering Pub Date : 2019-12-09 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0032-x
Stergios Verros, Laura Peeters, Arjen Bergsma, Edsko E G Hekman, Gijsbertus J Verkerke, Bart F J M Koopman
{"title":"Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study.","authors":"Stergios Verros,&nbsp;Laura Peeters,&nbsp;Arjen Bergsma,&nbsp;Edsko E G Hekman,&nbsp;Gijsbertus J Verkerke,&nbsp;Bart F J M Koopman","doi":"10.1186/s42490-019-0032-x","DOIUrl":"https://doi.org/10.1186/s42490-019-0032-x","url":null,"abstract":"<p><strong>Background: </strong>Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.</p><p><strong>Results: </strong>The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"31"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0032-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38456101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The problem with skeletal muscle series elasticity. 骨骼肌系列弹性的问题。
BMC biomedical engineering Pub Date : 2019-12-03 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0031-y
Walter Herzog
{"title":"The problem with skeletal muscle series elasticity.","authors":"Walter Herzog","doi":"10.1186/s42490-019-0031-y","DOIUrl":"10.1186/s42490-019-0031-y","url":null,"abstract":"<p><p>Muscles contain contractile and (visco-) elastic passive components. At the latest since Hill's classic works in the 1930s, it has been known that these elastic components affect the length and rate of change in length of the contractile component, and thus the active force capability of dynamically working muscles. In an attempt to elucidate functional properties of these muscle elastic components, scientists have introduced the notion of \"series\" and \"parallel\" elasticity. Unfortunately, this has led to much confusion and erroneous interpretations of results when the mechanical definitions of parallel and series elasticity were violated. In this review, I will focus on muscle series elasticity, by first providing the mechanical definition for series elasticity, and then provide theoretical and experimental examples of the concept of series elasticity. Of particular importance is the treatment of aponeuroses. Aponeuroses are not in series with the tendon of a muscle nor the muscle's contractile elements. The implicit and explicit treatment of aponeuroses as series elastic elements in muscle has led to incorrect conclusions about aponeuroses stiffness and Young's modulus, and has contributed to vast overestimations of the storage and release of mechanical energy in cyclic muscle contractions. Series elasticity is a defined mechanical concept that needs to be treated carefully when applied to skeletal muscle mechanics. Measuring aponeuroses mechanical properties in a muscle, and its possible contribution to the storage and release of mechanical energy is not trivial, and to my best knowledge, has not been (correctly) done yet.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"28"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38357570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation. 一种用于fes诱导的中风康复中减少肌肉疲劳的便携式辅助上肢混合外骨骼。
BMC biomedical engineering Pub Date : 2019-11-19 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0028-6
Ashley Stewart, Christopher Pretty, Xiaoqi Chen
{"title":"A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation.","authors":"Ashley Stewart,&nbsp;Christopher Pretty,&nbsp;Xiaoqi Chen","doi":"10.1186/s42490-019-0028-6","DOIUrl":"https://doi.org/10.1186/s42490-019-0028-6","url":null,"abstract":"<p><strong>Background: </strong>Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability. This work details the construction and testing of a novel assist-as-need upper-extremity hybrid exoskeleton which uses model-based Functional Electrical Stimulation control to delay Functional Electrical Stimulation induced muscle fatigue. The hybrid control is compared with Functional Electrical Stimulation only control on a healthy subject.</p><p><strong>Results: </strong>The hybrid system produced 24° less average angle error and 13.2° less Root Mean Square Error, than Functional Electrical Stimulation on its own and showed a reduction in Functional Electrical Stimulation induced fatigue.</p><p><strong>Conclusion: </strong>As far as the authors are aware, this is the study which provides evidence of the advantages of hybrid exoskeletons compared to use of Functional Electrical Stimulation on its own with regards to the delay of Functional Electrical Stimulation induced muscle fatigue.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"30"},"PeriodicalIF":0.0,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0028-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信