压缩感知MRI的深度误差校正网络。

BMC biomedical engineering Pub Date : 2020-02-27 eCollection Date: 2020-01-01 DOI:10.1186/s42490-020-0037-5
Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley
{"title":"压缩感知MRI的深度误差校正网络。","authors":"Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley","doi":"10.1186/s42490-020-0037-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.</p><p><strong>Results: </strong>In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.</p><p><strong>Conclusions: </strong>In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0037-5","citationCount":"10","resultStr":"{\"title\":\"A deep error correction network for compressed sensing MRI.\",\"authors\":\"Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley\",\"doi\":\"10.1186/s42490-020-0037-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.</p><p><strong>Results: </strong>In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.</p><p><strong>Conclusions: </strong>In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.</p>\",\"PeriodicalId\":72425,\"journal\":{\"name\":\"BMC biomedical engineering\",\"volume\":\"2 \",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42490-020-0037-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42490-020-0037-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-020-0037-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

背景:CS-MRI(磁共振成像压缩感知)利用图像稀疏性从很少的傅里叶k空间测量中重建MRI。由于逆成像建模不完善,最先进的CS-MRI方法往往会留下结构重建误差。在重建过程中对这些误差进行补偿,有助于进一步提高重建质量。结果:在这项工作中,我们提出了一个用于CS-MRI的DECN(深度误差校正网络)。DECN模型由三个部分组成,我们将其称为模块:指南或模板、模块、错误校正模块和数据保真度模块。现有的CS-MRI算法可以作为指导重建的模板模块。以该模板为指导,误差校正模块学习CNN(卷积神经网络)以一种调整模板图像重建误差的方式映射k空间数据。我们提出了一种深度纠错网络。我们的实验结果表明,我们提出的DECN CS-MRI重构框架通过补充一个纠错CNN,可以大大改进现有的反演算法。结论:在提出的深度纠错框架中,任何现成的CS-MRI算法都可以作为模板生成。然后利用深度神经网络对重构误差进行补偿。实验结果验证了该框架的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A deep error correction network for compressed sensing MRI.

A deep error correction network for compressed sensing MRI.

A deep error correction network for compressed sensing MRI.

A deep error correction network for compressed sensing MRI.

Background: CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.

Results: In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.

Conclusions: In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信