Paul Potgieter, Lukas Linde, Petra van Blerk, Corlius Fourie Birkill
{"title":"High-frequency signals: a comparison between the cable equation and telegrapher's equations in nerves.","authors":"Paul Potgieter, Lukas Linde, Petra van Blerk, Corlius Fourie Birkill","doi":"10.1186/s42490-025-00092-6","DOIUrl":"10.1186/s42490-025-00092-6","url":null,"abstract":"<p><p>Transmission of electrical impulses along axons is commonly modelled with the cable equation, which neglects the inductive effects that have been measured in nerves. By using the telegrapher's equations, it is possible to incorporate inductive effects and compare with the non-inductive case. Although both of these approaches have been extensively studied, the question remains as to which of these provides a more accurate model of human physiology. Many of the electrical properties of nerves are frequency-dependent, a fact which is not very relevant in a low-frequency domain, but which becomes salient when higher frequencies are considered, and necessitates the exploration of the magnitude of their effects. We compare the effects of both inductance and other variable parameters across a wide frequency range using both the cable equation and the telegrapher's equations, demonstrating that it is possible for axons to transmit high-frequency signals much more effectively than might be expected, especially in the absence of an action potential. This implies that the high-frequency domain necessitates use of the more complete model.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FROP-1 peptide-conjugated ultrasmall superparamagnetic nanoparticles as a targeted T1-weighted MR contrast agent for breast cancer: in vitro study.","authors":"Melika Samari, Zahra Alamzadeh, Rasoul Irajirad, Abolfazl Sarikhani, Vahid Pirhajati Mahabadi, Habib Ghaznavi, Samideh Khoei","doi":"10.1186/s42490-025-00091-7","DOIUrl":"https://doi.org/10.1186/s42490-025-00091-7","url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to produce ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs) conjugated to the FROP-1 peptide for targeted magnetic resonance imaging (MRI) of breast cancer cell lines and to evaluate its application as a specific and targeted T1-weighted MR imaging contrast agent in vitro. Sodium citrate-stabilized Fe<sub>3</sub>O<sub>4</sub> NPs were conjugated with the FROP-1 peptide by 1-ethyl-3-(3-dimethylaminopropyl) carbide diamide hydrochloride (EDC) to form a novel Fe<sub>3</sub>O<sub>4</sub>@FROP-1 specific target contrast agent. The specificity and targeting of Fe<sub>3</sub>O<sub>4</sub>@FROP-1 to bind FROP-1 receptors were investigated in vitro by cellular uptake and cellular MR imaging.</p><p><strong>Results: </strong>In this study, the synthesis of water-soluble ultrasmall Fe<sub>3</sub>O<sub>4</sub> NPs was performed by the co-precipitation method. XRD, TEM, and VSM analyses showed the formation of the Fe<sub>3</sub>O<sub>4</sub> NPs with an average size of about 3.78 ± 0.2 nm. FT-IR spectroscopy approved the conjugation of the FROP-1 peptide with the Fe<sub>3</sub>O<sub>4</sub> NPs. The synthesized Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs showed good biocompatibility, and the high r1 relaxivity and r2/r1, respectively, were 2.608 mM<sup>- 1</sup>S<sup>- 1</sup> and 1.18. The biocompatibility of the Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs on the MCF-7, SKBR-3, MDA-MB-231, and MCF-10 cell lines was determined using cytotoxicity analysis. The specific targeting effect on the cells was verified by in vitro cellular uptake and cell MR imaging.</p><p><strong>Conclusion: </strong>It was found that the contrast intensity of the Fe<sub>3</sub>O<sub>4</sub>@FROP-1 nanoprobe increases as Fe concentration increases. Cellular uptake of the Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs was quantified using ICP-MS. The synthesized NPs had better imaging performance than Dotarem (gadoterate meglumine). The findings showed that Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs have potential utility as a specific and targeted T1-weighted contrast agent in breast cancer MR imaging.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rabih Assaf, Abbas Rammal, Alban Goupil, Mohammad Kacim, Valeriu Vrabie
{"title":"Topological data analysis and machine learning for COVID-19 detection in CT scan lung images.","authors":"Rabih Assaf, Abbas Rammal, Alban Goupil, Mohammad Kacim, Valeriu Vrabie","doi":"10.1186/s42490-025-00089-1","DOIUrl":"10.1186/s42490-025-00089-1","url":null,"abstract":"<p><p>COVID-19 has claimed the lives of thousands over the past years. Although pathogenic laboratory testing is the established standard, it carries a significant drawback with a notable rate of false negatives. Consequently, there is an urgent need for alternative diagnostic approaches to combat this threat. In response to this pressing need for accurate and parameter-free methods for COVID-19 identification, particularly within lung images, we introduce a novel approach that combines the principles of topological data analysis with the capabilities of machine learning. Our proposed methodology entails the extraction of persistent homology features from lung images, effectively capturing the intrinsic topological properties inherent in the data. These extracted persistent homology features then serve as inputs for various machine learning methods employed for classification purposes. Our primary objective is to achieve exceptional accuracy in the detection of COVID-19 all while showcasing the effectiveness of these topological features. The experimental results demonstrate that the Random Forest Classifier and the Support Vector Machine models outperform the rest, showcasing their effectiveness in classifying CT scan lung images with remarkable precision-an accuracy rate of 97.5% for the Random Forest model and an AUC score that surpasses 0.99 for the SVM. Results of the model on the same data after exclusion of the topological features and on other data with application of the same model with topological features showed the efficiency of these features in the classification task.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge R Cibrão, Miguel Armada, Marta F Lima, André Vidinha-Mira, Jonas Campos, Tiffany S Pinho, António J Salgado, Alar Ainla, Nuna A Silva
{"title":"Development and application of a novel multi-channel in vitro electrical stimulator for cellular research.","authors":"Jorge R Cibrão, Miguel Armada, Marta F Lima, André Vidinha-Mira, Jonas Campos, Tiffany S Pinho, António J Salgado, Alar Ainla, Nuna A Silva","doi":"10.1186/s42490-025-00090-8","DOIUrl":"10.1186/s42490-025-00090-8","url":null,"abstract":"<p><strong>Background: </strong>Exposure to electric fields affects cell membranes impacting their potential and altering cellular excitability, nerve transmission, or muscle contraction. Furthermore, electric stimulation influences cell communication, migration, proliferation, and differentiation, with potential therapeutic applications. In vitro platforms for electrical stimulation are valuable tools for studying these effects and advancing medical research. In this study, we developed and tested a novel multi-channel in vitro electrical stimulator designed for cellular applications. The device aims to facilitate research on the effects of electrical stimulation (ES) on cellular processes, providing a versatile platform that is easy to reproduce and implement in various laboratory settings.</p><p><strong>Methods: </strong>The stimulator was designed to be simple, cost-effective, and versatile, fitting on standard 12-well plates for parallel experimentation. Extensive testing was conducted to evaluate the performance of the stimulator, including 3D finite element modelling to analyse electric field distribution. Moreover, the stimulator was evaluated in vitro using neuronal and stem cell cultures.</p><p><strong>Results: </strong>Finite element modelling confirmed that the electric field was sufficiently homogeneous within the stimulation zone, though liquid volume affected field strength. A custom controller was developed to program stimulation protocols, ensuring precise and adjustable current delivery up to 160 V/m. ES promoted neurite outgrowth when applied to SH-SY5Y neural cells or to primary spinal cord-derived cells. In human neuronal progenitor cells (hNPCs), ES enhanced neurite growth as well as differentiation into neurons. In adipose stem cells (ASCs), ES altered the secretome, enriching it in molecules that promoted hNPC differentiation into neurons without enhancing neurite growth.</p><p><strong>Conclusions: </strong>Our results highlight the potential of this multi-channel electrical stimulator as a valuable tool for advancing the understanding of ES mechanisms and its therapeutic applications. The simplicity and adaptability of this novel platform make it a promising addition to the toolkit of researchers studying electrical stimulation in cellular models.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel ViT-BILSTM model for physical activity intensity classification in adults using gravity-based acceleration.","authors":"Lin Wang, Zizhang Luo, Tianle Zhang","doi":"10.1186/s42490-025-00088-2","DOIUrl":"10.1186/s42490-025-00088-2","url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study is to apply a novel hybrid framework incorporating a Vision Transformer (ViT) and bidirectional long short-term memory (Bi-LSTM) model for classifying physical activity intensity (PAI) in adults using gravity-based acceleration. Additionally, it further investigates how PAI and temporal window (TW) impacts the model' s accuracy.</p><p><strong>Method: </strong>This research used the Capture-24 dataset, consisting of raw accelerometer data from 151 participants aged 18 to 91. Gravity-based acceleration was utilised to generate images encoding various PAIs. These images were subsequently analysed using the ViT-BiLSTM model, with results presented in confusion matrices and compared with baseline models. The model's robustness was evaluated through temporal stability testing and examination of accuracy and loss curves.</p><p><strong>Result: </strong>The ViT-BiLSTM model excelled in PAI classification task, achieving an overall accuracy of 98.5% ± 1.48% across five TWs-98.7% for 1s, 98.1% for 5s, 98.2% for 10s, 99% for 15s, and 98.65% for 30s of TW. The model consistently exhibited superior accuracy in predicting sedentary (98.9% ± 1%) compared to light physical activity (98.2% ± 2%) and moderate-to-vigorous physical activity (98.2% ± 3%). ANOVA showed no significant accuracy variation across PAIs (F = 2.18, p = 0.13) and TW (F = 0.52, p = 0.72). Accuracy and loss curves show the model consistently improves its performance across epochs, demonstrating its excellent robustness.</p><p><strong>Conclusion: </strong>This study demonstrates the ViT-BiLSTM model's efficacy in classifying PAI using gravity-based acceleration, with performance remaining consistent across diverse TWs and intensities. However, PAI and TW could result in slight variations in the model's performance. Future research should concern and investigate the impact of gravity-based acceleration on PAI thresholds, which may influence model's robustness and reliability.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship between skin temperature and blood flow during exposure to radio frequency energy: implications for device development.","authors":"Georgia E H Robles, David A Nelson","doi":"10.1186/s42490-024-00087-9","DOIUrl":"10.1186/s42490-024-00087-9","url":null,"abstract":"<p><strong>Background: </strong>The ST response to high frequency EM heating may give an indication of rate of BF in underlying tissue. This novel method, which we have termed REFLO (Rapid Electromagnetic Flow) has potential for applications such as detection of PAD. The method utilizes the relationship between blood flow rate and tissue temperature increase during exposure to radio frequency (RF) energy. We are developing an REFLO device to screen for peripheral artery disease (PAD). PAD is characterized by impaired blood flow to the legs, as reflected in the skin microcirculation. The REFLO system incorporates a radio frequency transmitter and a compact transducer housing a micropatch antenna and an infrared (IR) temperature sensor. At high RF frequencies (> 6 GHz) tissue heating is confined to the skin, such that an indication of blood flow may be inferred from the temperature response to controlled heating. The objective of this study is to determine the extent to which the magnitude and depth of heating as well as device sensitivity are functions of (i) RF frequency and (ii) thickness of the dermal tissue layer.</p><p><strong>Results: </strong>Results show that it is feasible to measure blood flow rate with REFLO technology. Surface temperature increases were found to be more dependent upon the magnitude of power absorption than location of absorption within the skin. While surface temperature response does depend upon radio wave frequency and thickness of the dermis layer, such dependencies are mild. Sensitivity to blood flow rate was found to be proportional to the magnitude of absorbed power.</p><p><strong>Conclusion: </strong>Results show that it is feasible to discriminate between blood flow rates using REFLO technology at frequencies within the 10-94 GHz range. All frequencies analyzed produced similar levels of sensitivity to blood flow rate despite significant differences in penetration depth. These results are being used in the development of a preclinical prototype for quick and easy detection of asymptomatic PAD in humans.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua R Siegel, Jedidiah K Harwood, Annette C Lau, Dylan J A Brenneis, Michael R Dawson, Patrick M Pilarski, Jonathon S Schofield
{"title":"A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol.","authors":"Joshua R Siegel, Jedidiah K Harwood, Annette C Lau, Dylan J A Brenneis, Michael R Dawson, Patrick M Pilarski, Jonathon S Schofield","doi":"10.1186/s42490-024-00086-w","DOIUrl":"https://doi.org/10.1186/s42490-024-00086-w","url":null,"abstract":"<p><p>Despite significant technological progress in prosthetic hands, a device with functionality akin to a biological extremity is far from realization. To better support the development of next-generation technologies, we investigated the grasping capabilities of clinically prescribable and commercially available (CPCA) prosthetic hands against those that are 3D-printed, which offer cost-effective and customizable solutions. Our investigation utilized the Anthropomorphic Hand Assessment Protocol (AHAP) as a benchtop evaluation of the multi-grasp performance of 3D-printed devices against CPCA prosthetic hands. Our comparison sample included three open-source 3D-printed prosthetic hands (HACKberry Hand, HANDi Hand, and BEAR PAW) and three CPCA prosthetic hands (Össur i-Limb Quantum, RSL Steeper BeBionic Hand V3, and Psyonic Ability Hand), along with including previously published AHAP data for four additional 3D-printed hands (Dextrus v2.0, IMMA, InMoov, and Limbitless). Our findings revealed a notable grasping performance disparity, with 3D-printed prostheses generally underperforming compared to their CPCA counterparts, specifically in cylindrical, diagonal volar, extension, and spherical grips. We propose that the observed performance shortfalls are likely attributed to the design or build quality of the 3D-printed prostheses, owing to the fact that 3D-printed hands often have a lower technology readiness level for widespread use. Addressing the limitations highlighted in this work and subsequent research will play a crucial role in refining the design and functionality of both 3D-printed and CPCA prosthetic devices.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zach Spears, Molly Paras, Lauren Fitzsimmons, Logan De Lacy, Peter Wawrzyn, Sam Conway, Srihari Gopalan, Kyle Muckenhirn, John Puccinelli
{"title":"Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study.","authors":"Zach Spears, Molly Paras, Lauren Fitzsimmons, Logan De Lacy, Peter Wawrzyn, Sam Conway, Srihari Gopalan, Kyle Muckenhirn, John Puccinelli","doi":"10.1186/s42490-024-00085-x","DOIUrl":"10.1186/s42490-024-00085-x","url":null,"abstract":"<p><strong>Background: </strong>This study introduces a novel surgical instrument to reduce iatrogenic nerve injuries during procedures such as carpal tunnel and ulnar nerve decompression surgery. These injuries often result from direct damage to surrounding tissues by surgical instruments, whose designs have remained largely unchanged over the past decades. The novel device is a modified surgical forceps that has a deployable surgical scalpel that runs along a groove on the forceps. This design protects important anatomical structures while allowing fast dissection and cutting of fascial layers.</p><p><strong>Methods: </strong>The process used to develop a novel instrument included computer-aided design (CAD) modeling, 3D printing for prototyping, and the fabrication of an aluminum prototype. Biomechanical testing was performed with the novel device, iris scissors, bandage scissors, and a scalpel on an MTS Static Materials Test System. The peak force to slide-cut, number of cut attempts, and percentage cut on first attempt were compared between the prototype and traditional surgical tools. The materials cut in testing were Ace™ bandage, stockinette, and gauze. Statistical analyses were performed using Welch's t-tests and Fisher's exact tests.</p><p><strong>Results: </strong>Compared to conventional bandage and iris scissors, the novel surgical instrument required significantly less force to cut through an Ace™ bandage, stockinette, and gauze (p < 0.01). The number of cuts required to transect those same materials with the novel device was comparable to that of the scalpel and bandage scissors. Additionally, while there were no differences between the novel device and the other devices for an Ace™ bandage and stockinette, the novel device tended to cut a greater percentage of gauze in one pass than did the iris scissors.</p><p><strong>Conclusion: </strong>The novel surgical instrument designed in this study required less force compared to conventional scissors, demonstrated cutting efficiency similar to that of a scalpel blade, and had more safety features than either instrument. This study highlights the value of collaboration between biomedical engineering and orthopedic surgery departments on innovation in medical technology, through which new technologies with improved design and functionality demonstrate the potential to reduce iatrogenic injuries.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The neurophysiology of sensorimotor prosthetic control.","authors":"Sherif M Elbasiouny","doi":"10.1186/s42490-024-00084-y","DOIUrl":"10.1186/s42490-024-00084-y","url":null,"abstract":"<p><p>Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anantha Narayanan Ramakrishnan, Josephine Reymann, Christopher Ludtka, Andreas Kiesow, Stefan Schwan
{"title":"Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis.","authors":"Anantha Narayanan Ramakrishnan, Josephine Reymann, Christopher Ludtka, Andreas Kiesow, Stefan Schwan","doi":"10.1186/s42490-024-00083-z","DOIUrl":"10.1186/s42490-024-00083-z","url":null,"abstract":"<p><strong>Background: </strong>Restorative solutions designed for edentulous patients such as dentures and their accompanying denture adhesives operate in the complex and dynamic environment represented by human oral physiology. Developing material models accounting for the viscoelastic behavior of denture adhesives can facilitate their further optimization within that unique physiological environment. This study aims to statistically quantify the degree of significance of three physiological variables - namely: temperature, adhesive swelling, and pH - on denture adhesive mechanical behavior. Further, based on these statistical significance estimations, a previously-developed viscoelastic material modelling approach for such denture adhesives is further expanded and developed to capture these variables' effects on mechanical behavior.</p><p><strong>Methods: </strong>In this study a comparable version of Denture adhesive Corega Comfort was analysed rheologically using the steady state frequency sweep tests. The experimentally derived rheological storage and loss modulus values for the selected physiological variables were statistically analyzed using multi parameter linear regression analysis and the Pearson's coefficient technique to understand the significance of each individual parameter on the relaxation spectrum of the denture adhesive. Subsequently, the parameters are incorporated into a viscoelastic material model based on Prony series discretization and time-temperature superposition, and the mathematical relationship for the loss modulus is deduced.</p><p><strong>Results: </strong>The results of this study clearly indicated that the variation in both the storage and loss modulus values can be accurately predicted using the oral cavity physiological parameters of temperature, swelling ratio, and pH with an adjusted R<sup>2</sup> value of 0.85. The R<sup>2</sup> value from the multi-parameter regression analysis indicated that the predictor variables can estimate the loss and storage modulus with a reasonable accuracy for at least 85% of the rheologically determined continuous relaxation spectrum with a confidence level of 98%. The Pearson's coefficient for the independent variables indicated that temperature and swelling have a strong influence on the loss modulus, whereas pH had a weak influence. Based on statistical analysis, these mathematical relationships were further developed in this study.</p><p><strong>Conclusions: </strong>This multi-parameter viscoelastic material model is intended to facilitate future detailed numerical investigations performed with implementation of denture adhesives using the finite element method.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}