BMC biomedical engineering最新文献

筛选
英文 中文
Arrhythmia detection with transfer learning architecture integrating the developed optimization algorithm and regularization method. 心律失常检测的迁移学习体系结构,将开发的优化算法与正则化方法相结合。
BMC biomedical engineering Pub Date : 2025-07-01 DOI: 10.1186/s42490-025-00094-4
Fatma Akalın, Pınar Dervişoğlu Çavdaroğlu, Mehmet Fatih Orhan
{"title":"Arrhythmia detection with transfer learning architecture integrating the developed optimization algorithm and regularization method.","authors":"Fatma Akalın, Pınar Dervişoğlu Çavdaroğlu, Mehmet Fatih Orhan","doi":"10.1186/s42490-025-00094-4","DOIUrl":"10.1186/s42490-025-00094-4","url":null,"abstract":"<p><p>Electrocardiography (ECG) is a non-invasive tool used to identify abnormalities in heart rhythm. It is used to evaluate dysfunctions in the electrical system of the heart. It offers a mechanism that does not cause any harm to patients. Being affordable makes it accessible. It provides a comprehensive assessment of the condition of the heart. Although it provides a successful analysis opportunity for arrhythmia detection, it is time-consuming and depends on the clinician's experience. In addition, since the ECG patterns in pediatric patients are different from the ECG patterns in adults, physicians consider it a difficult and complex task. For this reason, a custom dataset of pediatric patients was created in this study. This dataset consists of 1318 abnormal beats and 1403 normal beats. MobileNetv2 transfer learning architecture was used to classify this balanced dataset. However, the stability of the results is a valuable. Therefore, the optimization algorithm that minimizes the loss function and the regularization method that controls the complexity of the model are proposed. In this direction, Proposed Optimization Algorithm V5 and Proposed Regularization Method V5 approaches have been integrated into the MobileNetv2 transfer learning model. The accuracy rates produced in the training and test datasets are 0.9801 and 0.9509, respectively. These results have acceptable improvement and stability compared to the accuracies of 0.9633 and 0.9399 produced by the original MobileNetv2 architecture on the training and test dataset, respectively. However, performance values provide limited information about the generalizability of the model. Therefore, the same processes were repeated on a more complex dataset with 6 categories. As a result of the classification, the accuracy rates for the training and test data sets were obtained as 0.9200% and 0.8975%, respectively. Training was performed under the same conditions as the training performed on 2-category datasets. Therefore, it is normal for the test dataset to experience a decrease of approximately 5%. The results obtained show that generalizations can be made for comprehensive, highly diverse and rich datasets.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144531334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of crouch angle on lower-extremity kinetic gait profile and walk distance in children with cerebral palsy: a cross-sectional study. 蹲姿角度对脑瘫患儿下肢运动步态及步行距离影响的横断面研究。
BMC biomedical engineering Pub Date : 2025-07-01 DOI: 10.1186/s42490-025-00093-5
Rajani Mullerpatan, Triveni Shetty, Sailakshmi Ganesan, Ashok Johari
{"title":"Influence of crouch angle on lower-extremity kinetic gait profile and walk distance in children with cerebral palsy: a cross-sectional study.","authors":"Rajani Mullerpatan, Triveni Shetty, Sailakshmi Ganesan, Ashok Johari","doi":"10.1186/s42490-025-00093-5","DOIUrl":"10.1186/s42490-025-00093-5","url":null,"abstract":"<p><strong>Background: </strong>Gait kinetics explains dynamics of gait deviations, which inform surgical and non-surgical clinical-decision-making to enhance walking performance of children with cerebral palsy. Kinetic gait profile of children with lesser crouch angle is known; however lower-extremity gait kinetics of ambulatory children at a further continuum of the spectrum with greater crouch angle is unclear. Therefore, present cross-sectional study evaluated influence of varying crouch angle on gait kinetics and walk distance.</p><p><strong>Method: </strong>Following ethical approval and signed informed consent of parents, 3-D gait of 33 ambulatory children with CP(10.4 year) and 31 age-matched typically-developing children was studied to compute the magnitude and timing of lower-extremity external net joint moments and power during stance phase. An average of 3gait trials walked bare-feet at self-selected pace was considered for analyses. Walk distance was measured with 2-min walk test. Typically developing children were classified as Group I, children with mild crouch-angle (mean knee flexion angle during stance)[Formula: see text]16.8<sup>0</sup>and ≤ 25<sup>0</sup> were classified as Group II(n = 17), whereas children with severe crouch-angle i.e.[Formula: see text] 25<sup>0</sup> throughout stance phase were classified as Group III(n = 16). Three groups were compared with one-way-ANOVA(p ≤ 0.05). Bonferroni adjustment was made for post-hoc analyses (p ≤ 0.01).</p><p><strong>Results: </strong>Gait speed, cadence and 2-minute walk distance decreased from Group I to II to III(p ≤ 0.01). Hip flexion, extension and adduction; knee flexion and ankle dorsiflexion moments were significantly different between three groups(p ≤ 0.01)). Rise in crouch-angle was associated with an increase in peak hip flexion moment and increase in power generated at hip and decrease in power generated at knee and ankle (p ≤ 0.01). The timing of peak hip and knee moments during stance phase also differed across the 3 groups (p ≤ 0.01) indicating a delay in the occurrence of peak hip flexion-extension; abduction-adduction and knee flexion moment with a rise in crouch angle.</p><p><strong>Conclusion: </strong>Present findings inform lower-extremity joint kinetics during gait across the spectrum of mild to severe crouch angle with reference to typically-developing children. Precise knowledge of magnitude and pattern of net joint moments and power along with the timing of moments and decline in walking distance in children with severe crouch, can guide therapeutic interventions to restore the optimum dynamic lever arm function for improved walking performance.</p><p><strong>Trial registration: </strong>CTRI registration no. CTRI/22/12/048524/27/12/2022.</p><p><strong>Trial registry: </strong>CTRI/22/12.</p><p><strong>Trial registration number: </strong>048524. Trial registration date: 27th December 2022.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144531335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-frequency signals: a comparison between the cable equation and telegrapher's equations in nerves. 高频信号:神经中电缆方程与电报方程的比较。
BMC biomedical engineering Pub Date : 2025-06-02 DOI: 10.1186/s42490-025-00092-6
Paul Potgieter, Lukas Linde, Petra van Blerk, Corlius Fourie Birkill
{"title":"High-frequency signals: a comparison between the cable equation and telegrapher's equations in nerves.","authors":"Paul Potgieter, Lukas Linde, Petra van Blerk, Corlius Fourie Birkill","doi":"10.1186/s42490-025-00092-6","DOIUrl":"10.1186/s42490-025-00092-6","url":null,"abstract":"<p><p>Transmission of electrical impulses along axons is commonly modelled with the cable equation, which neglects the inductive effects that have been measured in nerves. By using the telegrapher's equations, it is possible to incorporate inductive effects and compare with the non-inductive case. Although both of these approaches have been extensively studied, the question remains as to which of these provides a more accurate model of human physiology. Many of the electrical properties of nerves are frequency-dependent, a fact which is not very relevant in a low-frequency domain, but which becomes salient when higher frequencies are considered, and necessitates the exploration of the magnitude of their effects. We compare the effects of both inductance and other variable parameters across a wide frequency range using both the cable equation and the telegrapher's equations, demonstrating that it is possible for axons to transmit high-frequency signals much more effectively than might be expected, especially in the absence of an action potential. This implies that the high-frequency domain necessitates use of the more complete model.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FROP-1 peptide-conjugated ultrasmall superparamagnetic nanoparticles as a targeted T1-weighted MR contrast agent for breast cancer: in vitro study. FROP-1肽偶联的超顺磁性纳米颗粒作为乳腺癌靶向t1加权MR造影剂:体外研究
BMC biomedical engineering Pub Date : 2025-05-01 DOI: 10.1186/s42490-025-00091-7
Melika Samari, Zahra Alamzadeh, Rasoul Irajirad, Abolfazl Sarikhani, Vahid Pirhajati Mahabadi, Habib Ghaznavi, Samideh Khoei
{"title":"FROP-1 peptide-conjugated ultrasmall superparamagnetic nanoparticles as a targeted T1-weighted MR contrast agent for breast cancer: in vitro study.","authors":"Melika Samari, Zahra Alamzadeh, Rasoul Irajirad, Abolfazl Sarikhani, Vahid Pirhajati Mahabadi, Habib Ghaznavi, Samideh Khoei","doi":"10.1186/s42490-025-00091-7","DOIUrl":"https://doi.org/10.1186/s42490-025-00091-7","url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to produce ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs) conjugated to the FROP-1 peptide for targeted magnetic resonance imaging (MRI) of breast cancer cell lines and to evaluate its application as a specific and targeted T1-weighted MR imaging contrast agent in vitro. Sodium citrate-stabilized Fe<sub>3</sub>O<sub>4</sub> NPs were conjugated with the FROP-1 peptide by 1-ethyl-3-(3-dimethylaminopropyl) carbide diamide hydrochloride (EDC) to form a novel Fe<sub>3</sub>O<sub>4</sub>@FROP-1 specific target contrast agent. The specificity and targeting of Fe<sub>3</sub>O<sub>4</sub>@FROP-1 to bind FROP-1 receptors were investigated in vitro by cellular uptake and cellular MR imaging.</p><p><strong>Results: </strong>In this study, the synthesis of water-soluble ultrasmall Fe<sub>3</sub>O<sub>4</sub> NPs was performed by the co-precipitation method. XRD, TEM, and VSM analyses showed the formation of the Fe<sub>3</sub>O<sub>4</sub> NPs with an average size of about 3.78 ± 0.2 nm. FT-IR spectroscopy approved the conjugation of the FROP-1 peptide with the Fe<sub>3</sub>O<sub>4</sub> NPs. The synthesized Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs showed good biocompatibility, and the high r1 relaxivity and r2/r1, respectively, were 2.608 mM<sup>- 1</sup>S<sup>- 1</sup> and 1.18. The biocompatibility of the Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs on the MCF-7, SKBR-3, MDA-MB-231, and MCF-10 cell lines was determined using cytotoxicity analysis. The specific targeting effect on the cells was verified by in vitro cellular uptake and cell MR imaging.</p><p><strong>Conclusion: </strong>It was found that the contrast intensity of the Fe<sub>3</sub>O<sub>4</sub>@FROP-1 nanoprobe increases as Fe concentration increases. Cellular uptake of the Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs was quantified using ICP-MS. The synthesized NPs had better imaging performance than Dotarem (gadoterate meglumine). The findings showed that Fe<sub>3</sub>O<sub>4</sub>@FROP-1 NPs have potential utility as a specific and targeted T1-weighted contrast agent in breast cancer MR imaging.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological data analysis and machine learning for COVID-19 detection in CT scan lung images. CT扫描肺部图像中COVID-19检测的拓扑数据分析和机器学习。
BMC biomedical engineering Pub Date : 2025-04-02 DOI: 10.1186/s42490-025-00089-1
Rabih Assaf, Abbas Rammal, Alban Goupil, Mohammad Kacim, Valeriu Vrabie
{"title":"Topological data analysis and machine learning for COVID-19 detection in CT scan lung images.","authors":"Rabih Assaf, Abbas Rammal, Alban Goupil, Mohammad Kacim, Valeriu Vrabie","doi":"10.1186/s42490-025-00089-1","DOIUrl":"10.1186/s42490-025-00089-1","url":null,"abstract":"<p><p>COVID-19 has claimed the lives of thousands over the past years. Although pathogenic laboratory testing is the established standard, it carries a significant drawback with a notable rate of false negatives. Consequently, there is an urgent need for alternative diagnostic approaches to combat this threat. In response to this pressing need for accurate and parameter-free methods for COVID-19 identification, particularly within lung images, we introduce a novel approach that combines the principles of topological data analysis with the capabilities of machine learning. Our proposed methodology entails the extraction of persistent homology features from lung images, effectively capturing the intrinsic topological properties inherent in the data. These extracted persistent homology features then serve as inputs for various machine learning methods employed for classification purposes. Our primary objective is to achieve exceptional accuracy in the detection of COVID-19 all while showcasing the effectiveness of these topological features. The experimental results demonstrate that the Random Forest Classifier and the Support Vector Machine models outperform the rest, showcasing their effectiveness in classifying CT scan lung images with remarkable precision-an accuracy rate of 97.5% for the Random Forest model and an AUC score that surpasses 0.99 for the SVM. Results of the model on the same data after exclusion of the topological features and on other data with application of the same model with topological features showed the efficiency of these features in the classification task.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and application of a novel multi-channel in vitro electrical stimulator for cellular research. 用于细胞研究的新型多通道体外电刺激器的开发与应用。
BMC biomedical engineering Pub Date : 2025-03-03 DOI: 10.1186/s42490-025-00090-8
Jorge R Cibrão, Miguel Armada, Marta F Lima, André Vidinha-Mira, Jonas Campos, Tiffany S Pinho, António J Salgado, Alar Ainla, Nuna A Silva
{"title":"Development and application of a novel multi-channel in vitro electrical stimulator for cellular research.","authors":"Jorge R Cibrão, Miguel Armada, Marta F Lima, André Vidinha-Mira, Jonas Campos, Tiffany S Pinho, António J Salgado, Alar Ainla, Nuna A Silva","doi":"10.1186/s42490-025-00090-8","DOIUrl":"10.1186/s42490-025-00090-8","url":null,"abstract":"<p><strong>Background: </strong>Exposure to electric fields affects cell membranes impacting their potential and altering cellular excitability, nerve transmission, or muscle contraction. Furthermore, electric stimulation influences cell communication, migration, proliferation, and differentiation, with potential therapeutic applications. In vitro platforms for electrical stimulation are valuable tools for studying these effects and advancing medical research. In this study, we developed and tested a novel multi-channel in vitro electrical stimulator designed for cellular applications. The device aims to facilitate research on the effects of electrical stimulation (ES) on cellular processes, providing a versatile platform that is easy to reproduce and implement in various laboratory settings.</p><p><strong>Methods: </strong>The stimulator was designed to be simple, cost-effective, and versatile, fitting on standard 12-well plates for parallel experimentation. Extensive testing was conducted to evaluate the performance of the stimulator, including 3D finite element modelling to analyse electric field distribution. Moreover, the stimulator was evaluated in vitro using neuronal and stem cell cultures.</p><p><strong>Results: </strong>Finite element modelling confirmed that the electric field was sufficiently homogeneous within the stimulation zone, though liquid volume affected field strength. A custom controller was developed to program stimulation protocols, ensuring precise and adjustable current delivery up to 160 V/m. ES promoted neurite outgrowth when applied to SH-SY5Y neural cells or to primary spinal cord-derived cells. In human neuronal progenitor cells (hNPCs), ES enhanced neurite growth as well as differentiation into neurons. In adipose stem cells (ASCs), ES altered the secretome, enriching it in molecules that promoted hNPC differentiation into neurons without enhancing neurite growth.</p><p><strong>Conclusions: </strong>Our results highlight the potential of this multi-channel electrical stimulator as a valuable tool for advancing the understanding of ES mechanisms and its therapeutic applications. The simplicity and adaptability of this novel platform make it a promising addition to the toolkit of researchers studying electrical stimulation in cellular models.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel ViT-BILSTM model for physical activity intensity classification in adults using gravity-based acceleration. 基于重力加速度的成人运动强度分类新模型viti - bilstm。
BMC biomedical engineering Pub Date : 2025-02-01 DOI: 10.1186/s42490-025-00088-2
Lin Wang, Zizhang Luo, Tianle Zhang
{"title":"A novel ViT-BILSTM model for physical activity intensity classification in adults using gravity-based acceleration.","authors":"Lin Wang, Zizhang Luo, Tianle Zhang","doi":"10.1186/s42490-025-00088-2","DOIUrl":"10.1186/s42490-025-00088-2","url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study is to apply a novel hybrid framework incorporating a Vision Transformer (ViT) and bidirectional long short-term memory (Bi-LSTM) model for classifying physical activity intensity (PAI) in adults using gravity-based acceleration. Additionally, it further investigates how PAI and temporal window (TW) impacts the model' s accuracy.</p><p><strong>Method: </strong>This research used the Capture-24 dataset, consisting of raw accelerometer data from 151 participants aged 18 to 91. Gravity-based acceleration was utilised to generate images encoding various PAIs. These images were subsequently analysed using the ViT-BiLSTM model, with results presented in confusion matrices and compared with baseline models. The model's robustness was evaluated through temporal stability testing and examination of accuracy and loss curves.</p><p><strong>Result: </strong>The ViT-BiLSTM model excelled in PAI classification task, achieving an overall accuracy of 98.5% ± 1.48% across five TWs-98.7% for 1s, 98.1% for 5s, 98.2% for 10s, 99% for 15s, and 98.65% for 30s of TW. The model consistently exhibited superior accuracy in predicting sedentary (98.9% ± 1%) compared to light physical activity (98.2% ± 2%) and moderate-to-vigorous physical activity (98.2% ± 3%). ANOVA showed no significant accuracy variation across PAIs (F = 2.18, p = 0.13) and TW (F = 0.52, p = 0.72). Accuracy and loss curves show the model consistently improves its performance across epochs, demonstrating its excellent robustness.</p><p><strong>Conclusion: </strong>This study demonstrates the ViT-BiLSTM model's efficacy in classifying PAI using gravity-based acceleration, with performance remaining consistent across diverse TWs and intensities. However, PAI and TW could result in slight variations in the model's performance. Future research should concern and investigate the impact of gravity-based acceleration on PAI thresholds, which may influence model's robustness and reliability.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between skin temperature and blood flow during exposure to radio frequency energy: implications for device development. 暴露于射频能量时皮肤温度和血流之间的关系:对设备开发的影响。
BMC biomedical engineering Pub Date : 2025-01-02 DOI: 10.1186/s42490-024-00087-9
Georgia E H Robles, David A Nelson
{"title":"Relationship between skin temperature and blood flow during exposure to radio frequency energy: implications for device development.","authors":"Georgia E H Robles, David A Nelson","doi":"10.1186/s42490-024-00087-9","DOIUrl":"10.1186/s42490-024-00087-9","url":null,"abstract":"<p><strong>Background: </strong>The ST response to high frequency EM heating may give an indication of rate of BF in underlying tissue. This novel method, which we have termed REFLO (Rapid Electromagnetic Flow) has potential for applications such as detection of PAD. The method utilizes the relationship between blood flow rate and tissue temperature increase during exposure to radio frequency (RF) energy. We are developing an REFLO device to screen for peripheral artery disease (PAD). PAD is characterized by impaired blood flow to the legs, as reflected in the skin microcirculation. The REFLO system incorporates a radio frequency transmitter and a compact transducer housing a micropatch antenna and an infrared (IR) temperature sensor. At high RF frequencies (> 6 GHz) tissue heating is confined to the skin, such that an indication of blood flow may be inferred from the temperature response to controlled heating. The objective of this study is to determine the extent to which the magnitude and depth of heating as well as device sensitivity are functions of (i) RF frequency and (ii) thickness of the dermal tissue layer.</p><p><strong>Results: </strong>Results show that it is feasible to measure blood flow rate with REFLO technology. Surface temperature increases were found to be more dependent upon the magnitude of power absorption than location of absorption within the skin. While surface temperature response does depend upon radio wave frequency and thickness of the dermis layer, such dependencies are mild. Sensitivity to blood flow rate was found to be proportional to the magnitude of absorbed power.</p><p><strong>Conclusion: </strong>Results show that it is feasible to discriminate between blood flow rates using REFLO technology at frequencies within the 10-94 GHz range. All frequencies analyzed produced similar levels of sensitivity to blood flow rate despite significant differences in penetration depth. These results are being used in the development of a preclinical prototype for quick and easy detection of asymptomatic PAD in humans.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"7 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol. 商用和3d打印假肢手的性能评估:使用拟人化手评估协议的比较。
BMC biomedical engineering Pub Date : 2024-12-02 DOI: 10.1186/s42490-024-00086-w
Joshua R Siegel, Jedidiah K Harwood, Annette C Lau, Dylan J A Brenneis, Michael R Dawson, Patrick M Pilarski, Jonathon S Schofield
{"title":"A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol.","authors":"Joshua R Siegel, Jedidiah K Harwood, Annette C Lau, Dylan J A Brenneis, Michael R Dawson, Patrick M Pilarski, Jonathon S Schofield","doi":"10.1186/s42490-024-00086-w","DOIUrl":"https://doi.org/10.1186/s42490-024-00086-w","url":null,"abstract":"<p><p>Despite significant technological progress in prosthetic hands, a device with functionality akin to a biological extremity is far from realization. To better support the development of next-generation technologies, we investigated the grasping capabilities of clinically prescribable and commercially available (CPCA) prosthetic hands against those that are 3D-printed, which offer cost-effective and customizable solutions. Our investigation utilized the Anthropomorphic Hand Assessment Protocol (AHAP) as a benchtop evaluation of the multi-grasp performance of 3D-printed devices against CPCA prosthetic hands. Our comparison sample included three open-source 3D-printed prosthetic hands (HACKberry Hand, HANDi Hand, and BEAR PAW) and three CPCA prosthetic hands (Össur i-Limb Quantum, RSL Steeper BeBionic Hand V3, and Psyonic Ability Hand), along with including previously published AHAP data for four additional 3D-printed hands (Dextrus v2.0, IMMA, InMoov, and Limbitless). Our findings revealed a notable grasping performance disparity, with 3D-printed prostheses generally underperforming compared to their CPCA counterparts, specifically in cylindrical, diagonal volar, extension, and spherical grips. We propose that the observed performance shortfalls are likely attributed to the design or build quality of the 3D-printed prostheses, owing to the fact that 3D-printed hands often have a lower technology readiness level for widespread use. Addressing the limitations highlighted in this work and subsequent research will play a crucial role in refining the design and functionality of both 3D-printed and CPCA prosthetic devices.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study. 剪刀和手术刀与新型手术器械的比较:生物力学切片研究。
BMC biomedical engineering Pub Date : 2024-11-01 DOI: 10.1186/s42490-024-00085-x
Zach Spears, Molly Paras, Lauren Fitzsimmons, Logan De Lacy, Peter Wawrzyn, Sam Conway, Srihari Gopalan, Kyle Muckenhirn, John Puccinelli
{"title":"Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study.","authors":"Zach Spears, Molly Paras, Lauren Fitzsimmons, Logan De Lacy, Peter Wawrzyn, Sam Conway, Srihari Gopalan, Kyle Muckenhirn, John Puccinelli","doi":"10.1186/s42490-024-00085-x","DOIUrl":"10.1186/s42490-024-00085-x","url":null,"abstract":"<p><strong>Background: </strong>This study introduces a novel surgical instrument to reduce iatrogenic nerve injuries during procedures such as carpal tunnel and ulnar nerve decompression surgery. These injuries often result from direct damage to surrounding tissues by surgical instruments, whose designs have remained largely unchanged over the past decades. The novel device is a modified surgical forceps that has a deployable surgical scalpel that runs along a groove on the forceps. This design protects important anatomical structures while allowing fast dissection and cutting of fascial layers.</p><p><strong>Methods: </strong>The process used to develop a novel instrument included computer-aided design (CAD) modeling, 3D printing for prototyping, and the fabrication of an aluminum prototype. Biomechanical testing was performed with the novel device, iris scissors, bandage scissors, and a scalpel on an MTS Static Materials Test System. The peak force to slide-cut, number of cut attempts, and percentage cut on first attempt were compared between the prototype and traditional surgical tools. The materials cut in testing were Ace™ bandage, stockinette, and gauze. Statistical analyses were performed using Welch's t-tests and Fisher's exact tests.</p><p><strong>Results: </strong>Compared to conventional bandage and iris scissors, the novel surgical instrument required significantly less force to cut through an Ace™ bandage, stockinette, and gauze (p < 0.01). The number of cuts required to transect those same materials with the novel device was comparable to that of the scalpel and bandage scissors. Additionally, while there were no differences between the novel device and the other devices for an Ace™ bandage and stockinette, the novel device tended to cut a greater percentage of gauze in one pass than did the iris scissors.</p><p><strong>Conclusion: </strong>The novel surgical instrument designed in this study required less force compared to conventional scissors, demonstrated cutting efficiency similar to that of a scalpel blade, and had more safety features than either instrument. This study highlights the value of collaboration between biomedical engineering and orthopedic surgery departments on innovation in medical technology, through which new technologies with improved design and functionality demonstrate the potential to reduce iatrogenic injuries.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信