Christina N M Ryan, Meletios N Doulgkeroglou, Dimitrios I Zeugolis
{"title":"Electric field stimulation for tissue engineering applications.","authors":"Christina N M Ryan, Meletios N Doulgkeroglou, Dimitrios I Zeugolis","doi":"10.1186/s42490-020-00046-0","DOIUrl":"https://doi.org/10.1186/s42490-020-00046-0","url":null,"abstract":"<p><p>Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"3 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00046-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38780755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-10-14eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00045-1
Ian Grierson, Don Minckler, Marian K Rippy, Andrew J Marshall, Nathalie Collignon, Jessica Bianco, Benoit Detry, Murray A Johnstone
{"title":"A novel suprachoroidal microinvasive glaucoma implant: in vivo biocompatibility and biointegration.","authors":"Ian Grierson, Don Minckler, Marian K Rippy, Andrew J Marshall, Nathalie Collignon, Jessica Bianco, Benoit Detry, Murray A Johnstone","doi":"10.1186/s42490-020-00045-1","DOIUrl":"https://doi.org/10.1186/s42490-020-00045-1","url":null,"abstract":"<p><strong>Background: </strong>A major challenge for any glaucoma implant is their ability to provide long-term intraocular pressure lowering efficacy. The formation of a low-permeability fibrous capsule around the device often leads to obstructed drainage channels, which may impair the drainage function of devices. These foreign body-related limitations point to the need to develop biologically inert biomaterials to improve performance in reaching long-term intraocular pressure reduction. The aim of this study was to evaluate in vivo (in rabbits) the ocular biocompatibility and tissue integration of a novel suprachoroidal microinvasive glaucoma implant, MINIject™ (iSTAR Medical, Wavre, Belgium).</p><p><strong>Results: </strong>In two rabbit studies, no biocompatibility issue was induced by the suprachoroidal, ab-externo implantation of the MINIject™ device. Clinical evaluation throughout the 6 post-operative months between the sham and test groups were similar, suggesting most reactions were related to the ab-externo surgical technique used for rabbits, rather than the implant material itself. Histological analysis of ocular tissues at post-operative months 1, 3 and 6 revealed that the implant was well-tolerated and induced only minimal fibroplasia and thus minimal encapsulation around the implant. The microporous structure of the device became rapidly colonized by cells, mostly by macrophages through cell migration, which do not, by their nature, impede the flow of aqueous humor through the device. Time-course analysis showed that once established, pore colonization was stable over time. No fibrosis nor dense connective tissue development were observed within any implant at any time point. The presence of pore colonization may be the process by which encapsulation around the implant is minimized, thus preserving the permeability of the surrounding tissues. No degradation nor structural changes of the implant occurred during the course of both studies.</p><p><strong>Conclusions: </strong>The novel MINIject™ microinvasive glaucoma implant was well-tolerated in ocular tissues of rabbits, with observance of biointegration, and no biocompatibility issues. Minimal fibrous encapsulation and stable cellular pore colonization provided evidence of preserved drainage properties over time, suggesting that the implant may produce a long-term ability to enhance aqueous outflow.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00045-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38605838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-10-14eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00044-2
Roberto Vazquez-Munoz, M Josefina Arellano-Jimenez, Jose L Lopez-Ribot
{"title":"Bismuth nanoparticles obtained by a facile synthesis method exhibit antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Candida albicans</i>.","authors":"Roberto Vazquez-Munoz, M Josefina Arellano-Jimenez, Jose L Lopez-Ribot","doi":"10.1186/s42490-020-00044-2","DOIUrl":"https://doi.org/10.1186/s42490-020-00044-2","url":null,"abstract":"<p><strong>Background: </strong>Bismuth compounds are known for their activity against multiple microorganisms; yet, the antibiotic properties of bismuth nanoparticles (BiNPs) remain poorly explored. The objective of this work is to further the research of BiNPs for nanomedicine-related applications. Stable Polyvinylpyrrolidone (PVP)-coated BiNPs were produced by a chemical reduction process, in less than 30 min.</p><p><strong>Results: </strong>We produced stable, small, spheroid PVP-coated BiNPs with a crystalline organization. The PVP-BiNPs showed potent antibacterial activity against the pathogenic bacterium <i>Staphylococcus aureus</i> and antifungal activity against the opportunistic pathogenic yeast <i>Candida albicans</i>, both under planktonic and biofilm growing conditions.</p><p><strong>Conclusions: </strong>Our results indicate that BiNPs represent promising antimicrobial nanomaterials, and this facile synthetic method may allow for further investigation of their activity against a variety of pathogenic microorganisms.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00044-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38605839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-08-14eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00043-3
Changzhu Jin, David Moore, John Snell, Dong-Guk Paeng
{"title":"An open-source phase correction toolkit for transcranial focused ultrasound.","authors":"Changzhu Jin, David Moore, John Snell, Dong-Guk Paeng","doi":"10.1186/s42490-020-00043-3","DOIUrl":"10.1186/s42490-020-00043-3","url":null,"abstract":"<p><strong>Background: </strong>The phase correction on transcranial focused ultrasound is essential to regulate unwanted focal point shift caused by skull bone aberration. The aim of the current study was to design and investigate the feasibility of a ray-based phase correction toolkit for transcranial focused ultrasound.</p><p><strong>Results: </strong>The peak pressure at focal area was improved by 140.5 ± 7.0% on target I and 134.8 ± 19.1% on target II using proposed phase correction toolkit, respectively. A total computation time of 402.1 ± 24.5 milliseconds was achieved for each sonication.</p><p><strong>Conclusion: </strong>The designed ray-based phase correction software can be used as a lightweight toolkit to compensate aberrated phase within clinical environment.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-06-24eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00042-4
Jonatan Fridolfsson, Daniel Arvidsson, Frithjof Doerks, Theresa J Kreidler, Stefan Grau
{"title":"Workplace activity classification from shoe-based movement sensors.","authors":"Jonatan Fridolfsson, Daniel Arvidsson, Frithjof Doerks, Theresa J Kreidler, Stefan Grau","doi":"10.1186/s42490-020-00042-4","DOIUrl":"https://doi.org/10.1186/s42490-020-00042-4","url":null,"abstract":"<p><strong>Background: </strong>High occupational physical activity is associated with lower health. Shoe-based movement sensors can provide an objective measurement of occupational physical activity in a lab setting but the performance of such methods in a free-living environment have not been investigated. The aim of the current study was to investigate the feasibility and accuracy of shoe sensor-based activity classification in an industrial work setting.</p><p><strong>Results: </strong>An initial calibration part was performed with 35 subjects who performed different workplace activities in a structured lab setting while the movement was measured by a shoe-sensor. Three different machine-learning models (random forest (RF), support vector machine and k-nearest neighbour) were trained to classify activities using the collected lab data. In a second validation part, 29 industry workers were followed at work while an observer noted their activities and the movement was captured with a shoe-based movement sensor. The performance of the trained classification models were validated using the free-living workplace data. The RF classifier consistently outperformed the other models with a substantial difference in in the free-living validation. The accuracy of the initial RF classifier was 83% in the lab setting and 43% in the free-living validation. After combining activities that was difficult to discriminate the accuracy increased to 96 and 71% in the lab and free-living setting respectively. In the free-living part, 99% of the collected samples either consisted of stationary activities or walking.</p><p><strong>Conclusions: </strong>Walking and stationary activities can be classified with high accuracy from a shoe-based movement sensor in a free-living occupational setting. The distribution of activities at the workplace should be considered when validating activity classification models in a free-living setting.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00042-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-05-28eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00041-5
Bassam A Masri, Andrew Eisen, Clive P Duncan, James A McEwen
{"title":"Tourniquet-induced nerve compression injuries are caused by high pressure levels and gradients - a review of the evidence to guide safe surgical, pre-hospital and blood flow restriction usage.","authors":"Bassam A Masri, Andrew Eisen, Clive P Duncan, James A McEwen","doi":"10.1186/s42490-020-00041-5","DOIUrl":"https://doi.org/10.1186/s42490-020-00041-5","url":null,"abstract":"<p><p>Tourniquets in orthopaedic surgery safely provide blood free surgical fields, but their use is not without risk. Tourniquets can result in temporary or permanent injury to underlying nerves, muscles, blood vessels and soft tissues. Advances in safety, accuracy and reliability of surgical tourniquet systems have reduced nerve-related injuries by reducing pressure levels and pressure gradients, but that may have resulted in reduced awareness of potential injury mechanisms. Short-term use of pre-hospital tourniquets is effective in preventing life-threatening blood loss, but a better understanding of the differences between tourniquets designed for pre-hospital vs surgical use will provide a framework around which to develop guidelines for admitting to hospital individuals with pre-applied tourniquets. Recent evidence supports the application of tourniquets for blood flow restriction (BFR) therapy to reduce muscular atrophy, increase muscle strength, and stimulate bone growth. BFR therapy when appropriately prescribed can augment a surgeon's treatment plan, improving patient outcomes and reducing recovery time. Key risks, hazards, and mechanisms of injury for surgical, BFR therapy, and pre-hospital tourniquet use are identified, and a description is given of how advances in personalized tourniquet systems have reduced tourniquet-related injuries in these broader settings, increasing patient safety and how these advances are improving treatment outcomes.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00041-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38357694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-04-30eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00040-6
Mallory D Griffin, Sean R Pereira, Megan K DeBari, Rosalyn D Abbott
{"title":"Mechanisms of action, chemical characteristics, and model systems of obesogens.","authors":"Mallory D Griffin, Sean R Pereira, Megan K DeBari, Rosalyn D Abbott","doi":"10.1186/s42490-020-00040-6","DOIUrl":"https://doi.org/10.1186/s42490-020-00040-6","url":null,"abstract":"<p><p>There is increasing evidence for the role of environmental endocrine disrupting contaminants, coined obesogens, in exacerbating the rising obesity epidemic. Obesogens can be found in everyday items ranging from pesticides to food packaging. Although research shows that obesogens can have effects on adipocyte size, phenotype, metabolic activity, and hormone levels, much remains unknown about these chemicals. This review will discuss what is currently known about the mechanisms of obesogens, including expression of the PPARs, hormone interference, and inflammation. Strategies for identifying obesogenic chemicals and their mechanisms through chemical characteristics and model systems will also be discussed. Ultimately, research should focus on improving models to discern precise mechanisms of obesogenic action and to test therapeutics targeting these mechanisms.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00040-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-03-23eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-00039-z
John H Challis
{"title":"Quaternions as a solution to determining the angular kinematics of human movement.","authors":"John H Challis","doi":"10.1186/s42490-020-00039-z","DOIUrl":"https://doi.org/10.1186/s42490-020-00039-z","url":null,"abstract":"<p><p>The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated. The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion, <i>q</i> = (<i>q</i> <sub>0</sub>, <i>q</i> <sub>1</sub>, <i>q</i> <sub>2</sub>, <i>q</i> <sub>3</sub>), can be considered a rotation (Ω = 2 cos<sup>-1</sup>(<i>q</i> <sub>0</sub>)), about an axis defined by a unit direction vector <math> <mfenced> <mrow><msub><mi>q</mi> <mn>1</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> <mrow><msub><mi>q</mi> <mn>2</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> <mrow><msub><mi>q</mi> <mn>3</mn></msub> <mo>/</mo> <mo>sin</mo> <mfenced><mfrac><mi>Ω</mi> <mn>2</mn></mfrac> </mfenced> </mrow> </mfenced> <mspace></mspace></math> . The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman's paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed. The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00039-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC biomedical engineeringPub Date : 2020-02-27eCollection Date: 2020-01-01DOI: 10.1186/s42490-020-0038-4
Kaitlyn R Ammann, Touhid Ahamed, Alice L Sweedo, Roozbeh Ghaffari, Yonatan E Weiner, Rebecca C Slepian, Hongki Jo, Marvin J Slepian
{"title":"Human motion component and envelope characterization via wireless wearable sensors.","authors":"Kaitlyn R Ammann, Touhid Ahamed, Alice L Sweedo, Roozbeh Ghaffari, Yonatan E Weiner, Rebecca C Slepian, Hongki Jo, Marvin J Slepian","doi":"10.1186/s42490-020-0038-4","DOIUrl":"10.1186/s42490-020-0038-4","url":null,"abstract":"<p><strong>Background: </strong>The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal \"pattern\" of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm.</p><p><strong>Results: </strong>Each of the three motion regimes studied had a distinct pattern - with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a \"motion envelope,\" defining and quantifying motion (range and shape - including the outer perimeter of the extreme of motion - i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer.</p><p><strong>Conclusions: </strong>A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital \"motion biomarkers\" of health and disease.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0038-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A deep error correction network for compressed sensing MRI.","authors":"Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley","doi":"10.1186/s42490-020-0037-5","DOIUrl":"10.1186/s42490-020-0037-5","url":null,"abstract":"<p><strong>Background: </strong>CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.</p><p><strong>Results: </strong>In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.</p><p><strong>Conclusions: </strong>In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0037-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}