用于活体脑器官长期高分辨率成像的 3D 打印微孔板插件。

Mariana Oksdath Mansilla, Camilo Salazar-Hernandez, Sally L Perrin, Kaitlin G Scheer, Gökhan Cildir, John Toubia, Kristyna Sedivakova, Melinda N Tea, Sakthi Lenin, Elise Ponthier, Erica C F Yeo, Vinay Tergaonkar, Santosh Poonnoose, Rebecca J Ormsby, Stuart M Pitson, Michael P Brown, Lisa M Ebert, Guillermo A Gomez
{"title":"用于活体脑器官长期高分辨率成像的 3D 打印微孔板插件。","authors":"Mariana Oksdath Mansilla, Camilo Salazar-Hernandez, Sally L Perrin, Kaitlin G Scheer, Gökhan Cildir, John Toubia, Kristyna Sedivakova, Melinda N Tea, Sakthi Lenin, Elise Ponthier, Erica C F Yeo, Vinay Tergaonkar, Santosh Poonnoose, Rebecca J Ormsby, Stuart M Pitson, Michael P Brown, Lisa M Ebert, Guillermo A Gomez","doi":"10.1186/s42490-021-00049-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months).</p><p><strong>Results: </strong>Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids.</p><p><strong>Conclusions: </strong>This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"3 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015192/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D-printed microplate inserts for long term high-resolution imaging of live brain organoids.\",\"authors\":\"Mariana Oksdath Mansilla, Camilo Salazar-Hernandez, Sally L Perrin, Kaitlin G Scheer, Gökhan Cildir, John Toubia, Kristyna Sedivakova, Melinda N Tea, Sakthi Lenin, Elise Ponthier, Erica C F Yeo, Vinay Tergaonkar, Santosh Poonnoose, Rebecca J Ormsby, Stuart M Pitson, Michael P Brown, Lisa M Ebert, Guillermo A Gomez\",\"doi\":\"10.1186/s42490-021-00049-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months).</p><p><strong>Results: </strong>Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids.</p><p><strong>Conclusions: </strong>This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.</p>\",\"PeriodicalId\":72425,\"journal\":{\"name\":\"BMC biomedical engineering\",\"volume\":\"3 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42490-021-00049-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-021-00049-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:类器官是研究人脑发育和病理状态的可靠模型。然而,目前的脑有机体培养方法产生的组织大小从 0.5 毫米到 2 毫米不等,需要不断搅拌以保证适当的氧合。因此,这种培养条件不适合全脑类脑器官活体成像,而这是在生理相关的时间范围内(如几天、几周、几个月)研究发育过程和疾病进展所必需的:在此,我们设计了可与标准 24 孔多孔板相适应的三维打印微孔板插入物,可使多个类器官在预定义和固定的 XYZ 坐标上生长。这一创新有助于对整个大脑器质性组织进行高分辨率成像,从而可以对器质性组织的生长和形态进行精确评估,并对器质性组织内的细胞进行长期追踪。我们将这项技术应用于通过脑器质中的神经元祖细胞追踪新皮质的发育,以及健康脑器质中源自患者的胶质母细胞瘤干细胞的移动:结论:这一新的生物工程平台是一项重大进步,它允许使用多模态倒置荧光显微镜对整个脑有机体进行长期详细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D-printed microplate inserts for long term high-resolution imaging of live brain organoids.

3D-printed microplate inserts for long term high-resolution imaging of live brain organoids.

3D-printed microplate inserts for long term high-resolution imaging of live brain organoids.

3D-printed microplate inserts for long term high-resolution imaging of live brain organoids.

Background: Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months).

Results: Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids.

Conclusions: This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信