Autophagy reportsPub Date : 2024-02-01eCollection Date: 2024-12-31DOI: 10.1080/27694127.2024.2306766
Hortense de Calbiac, Sebastian Montealegre, Marjolène Straube, Solène Renault, Hugo Debruge, Loïc Chentout, Sorana Ciura, Apolline Imbard, Edouard Le Guillou, Anca Marian, Nicolas Goudin, Laure Caccavelli, Sylvie Fabrega, Arnaud Hubas, Peter van Endert, Nicolas Dupont, Julien Diana, Edor Kabashi, Pascale de Lonlay
{"title":"TANGO2-related rhabdomyolysis symptoms are associated with abnormal autophagy functioning.","authors":"Hortense de Calbiac, Sebastian Montealegre, Marjolène Straube, Solène Renault, Hugo Debruge, Loïc Chentout, Sorana Ciura, Apolline Imbard, Edouard Le Guillou, Anca Marian, Nicolas Goudin, Laure Caccavelli, Sylvie Fabrega, Arnaud Hubas, Peter van Endert, Nicolas Dupont, Julien Diana, Edor Kabashi, Pascale de Lonlay","doi":"10.1080/27694127.2024.2306766","DOIUrl":"10.1080/27694127.2024.2306766","url":null,"abstract":"<p><p>Patients with pathogenic variants in the <i>TANGO2</i> gene suffer from severe and recurrent rhabdomyolysis episodes precipitated by fasting. Autophagy functioning was analyzed <i>in vitro</i>, in primary skeletal myoblasts from TANGO2 patients, in basal and fasting conditions, and <i>TANGO2</i> mutations were associated with reduced LC3-II levels upon starvation. In zebrafish larvae, <i>tango2</i> inhibition induced locomotor defects which were exacerbated by exposure to atorvastatin, a compound known to cause rhabdomyolysis. Importantly, rhabdomyolysis features of <i>tango2</i> knockdown were associated with autophagy and mitophagy defects in zebrafish. Calpeptin treatment was sufficient to rescue the locomotor properties thanks to its beneficial effect on autophagy functioning in zebrafish and to improve LC3-II levels in starved primary muscle cells of TANGO2 patients. Overall, we demonstrated that TANGO2 plays an important role in autophagy thus giving rise to new therapeutic perspectives in the prevention of RM life-threatening episodes.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy reportsPub Date : 2024-01-08DOI: 10.1080/27694127.2023.2300622
Manuel J. Mallén-Ponce, M. Pérez-Pérez
{"title":"ATG3 is subjected to redox regulation to quarantee ATG8 lipidation under ROS-generating stresses","authors":"Manuel J. Mallén-Ponce, M. Pérez-Pérez","doi":"10.1080/27694127.2023.2300622","DOIUrl":"https://doi.org/10.1080/27694127.2023.2300622","url":null,"abstract":"","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"27 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy reportsPub Date : 2024-01-01Epub Date: 2024-12-07DOI: 10.1080/27694127.2024.2434379
Zahra Baninameh, Jens O Watzlawik, Xu Hou, Tyrique Richardson, Nicholas W Kurchaba, Tingxiang Yan, Damian N Di Florio, DeLisa Fairweather, Lu Kang, Justin H Nguyen, Takahisa Kanekiyo, Dennis W Dickson, Sachiko Noda, Shigeto Sato, Nobutaka Hattori, Matthew S Goldberg, Ian G Ganley, Kelly L Stauch, Fabienne C Fiesel, Wolfdieter Springer
{"title":"Alterations of PINK1-PRKN signaling in mice during normal aging.","authors":"Zahra Baninameh, Jens O Watzlawik, Xu Hou, Tyrique Richardson, Nicholas W Kurchaba, Tingxiang Yan, Damian N Di Florio, DeLisa Fairweather, Lu Kang, Justin H Nguyen, Takahisa Kanekiyo, Dennis W Dickson, Sachiko Noda, Shigeto Sato, Nobutaka Hattori, Matthew S Goldberg, Ian G Ganley, Kelly L Stauch, Fabienne C Fiesel, Wolfdieter Springer","doi":"10.1080/27694127.2024.2434379","DOIUrl":"10.1080/27694127.2024.2434379","url":null,"abstract":"<p><p>The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied <i>in vitro</i> upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy <i>in vivo</i> is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment <i>in vivo</i>, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy reportsPub Date : 2024-01-01Epub Date: 2024-02-04DOI: 10.1080/27694127.2024.2305594
Jiajie Diao, Calvin K Yip, Qing Zhong
{"title":"Molecular structures and function of the autophagosome-lysosome fusion machinery.","authors":"Jiajie Diao, Calvin K Yip, Qing Zhong","doi":"10.1080/27694127.2024.2305594","DOIUrl":"10.1080/27694127.2024.2305594","url":null,"abstract":"<p><p>Macroautophagy (also known as autophagy) plays a pivotal role in maintaining cellular homeostasis. The terminal step of the multi-step autophagy degradation pathway involves fusion between the cargo-laden, double-membraned autophagosome and the lytic organelle lysosome/vacuole. Over the past decade, various core components of the molecular machinery that execute this critical terminal autophagy event have been identified. This review highlights recent advances in understanding the molecular structures, biochemical functions, and regulatory mechanisms of key components of this highly sophisticated machinery including the SNARE fusogens, tethering factors, Rab GTPases and associated guanine nucleotide exchange factors, and other accessory factors.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy reportsPub Date : 2024-01-01Epub Date: 2024-10-23DOI: 10.1080/27694127.2024.2418256
Pariyamon Thaprawat, Zhihai Zhang, Eric C Rentchler, Fengrong Wang, Shreya Chalasani, Christopher J Giuliano, Sebastian Lourido, Manlio Di Cristina, Daniel J Klionsky, Vern B Carruthers
{"title":"TgATG9 is required for autophagosome biogenesis and maintenance of chronic infection in <i>Toxoplasma gondii</i>.","authors":"Pariyamon Thaprawat, Zhihai Zhang, Eric C Rentchler, Fengrong Wang, Shreya Chalasani, Christopher J Giuliano, Sebastian Lourido, Manlio Di Cristina, Daniel J Klionsky, Vern B Carruthers","doi":"10.1080/27694127.2024.2418256","DOIUrl":"10.1080/27694127.2024.2418256","url":null,"abstract":"<p><p><i>Toxoplasma gondii</i> is a ubiquitous protozoan parasite that can reside long-term within hosts as intracellular tissue cysts comprised of chronic stage bradyzoites. To perturb chronic infection requires a better understanding of the cellular processes that mediate parasite persistence. Macroautophagy/autophagy is a catabolic and homeostatic pathway that is required for <i>T. gondii</i> chronic infection, although the molecular details of this process remain poorly understood. A key step in autophagy is the initial formation of the phagophore that sequesters cytoplasmic components and matures into a double-membraned autophagosome for delivery of the cargo to a cell's digestive organelle for degradative recycling. While <i>T. gondii</i> appears to have a reduced repertoire of autophagy proteins, it possesses a putative phospholipid scramblase, TgATG9. Through structural modeling and complementation assays, we show herein that TgATG9 can partially rescue bulk autophagy in <i>atg9Δ</i> yeast. We demonstrated the importance of TgATG9 for proper autophagosome dynamics at the subcellular level using three-dimensional live cell lattice light sheet microscopy. Conditional knockdown of TgATG9 in <i>T. gondii</i> after bradyzoite differentiation resulted in markedly reduced parasite viability. Together, our findings provide insights into the molecular dynamics of autophagosome biogenesis within an early-branching eukaryote and pinpoint the indispensable role of autophagy in maintaining <i>T. gondii</i> chronic infection.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy reportsPub Date : 2024-01-01Epub Date: 2024-09-16DOI: 10.1080/27694127.2024.2402675
Alagie Jassey, William T Jackson
{"title":"<i>Et tu, Brute</i>? TFEB promotes virus replication before being cleaved by a viral protease.","authors":"Alagie Jassey, William T Jackson","doi":"10.1080/27694127.2024.2402675","DOIUrl":"10.1080/27694127.2024.2402675","url":null,"abstract":"","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy reportsPub Date : 2023-11-22DOI: 10.1080/27694127.2023.2285214
Angela Dixon, M. Shim, April Nettesheim, Aislyn Coyne, Chien-Chia Su, Haiyan Gong, P. Liton
{"title":"Autophagy deficiency protects against ocular hypertension and glaucoma","authors":"Angela Dixon, M. Shim, April Nettesheim, Aislyn Coyne, Chien-Chia Su, Haiyan Gong, P. Liton","doi":"10.1080/27694127.2023.2285214","DOIUrl":"https://doi.org/10.1080/27694127.2023.2285214","url":null,"abstract":"","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139247368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}