Shihang Li , Muze Han , Bo Ren , Xingyue Chen , Shuda Hu , Liang Yuan , Fubao Zhou
{"title":"The effect of cylinder structure on the pre-dusting of axial separator","authors":"Shihang Li , Muze Han , Bo Ren , Xingyue Chen , Shuda Hu , Liang Yuan , Fubao Zhou","doi":"10.1016/j.apt.2024.104685","DOIUrl":"10.1016/j.apt.2024.104685","url":null,"abstract":"<div><div>This study proposes a novel method using an axial separator as a pre-dusting device for a cartridge filter. The structural parameters with optimum dust removal performance were studied, and on this basis the distribution of pressure and air velocity fields inside the separator was analyzed. When the diameter of the cylinder increased to a certain value, the generation of vortex nuclei was eliminated, further improving the separation efficiency. Considering the requirements of the cartridge filter on the resistance and separation efficiency of the pre-dust removal device, it is appropriate to use #IV or #V axial separator (cylinder diameter of 40 mm, cylinder length of 100 and 120 mm, respectively). These separators exhibit resistance values of 417 Pa and 303 Pa, and separation efficiencies of 67.6 % and 63.9 % respectively, with #IV demonstrating superior efficiency in capturing small-sized dust particles. The study identifies the optimal structure of the pre-dusting device, guiding its design and implementation to reduce the operational load on the cartridge filter, extend cleaning cycles, and improve service life.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104685"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruichao Tian , Jianlin Xie , Shuyan Wang , Xiaowei Li , Haoping Peng , Pengfei Yu , Yueming Guo
{"title":"3D CFD simulation of wet rough particles hydrodynamics in a pulsed fluidized bed using kinetic theory of rough spheres model","authors":"Ruichao Tian , Jianlin Xie , Shuyan Wang , Xiaowei Li , Haoping Peng , Pengfei Yu , Yueming Guo","doi":"10.1016/j.apt.2024.104680","DOIUrl":"10.1016/j.apt.2024.104680","url":null,"abstract":"<div><div>In the framework of kinetic theory of rough spheres (KTRS) model, a dynamic coefficient of restitution model is introduced to describe the collision behavior between wet rough particles in liquid. Based on the two-fluid model (TFM) combining kinetic theory of rough spheres, numerical simulations are conducted on the flow characteristic of rough particles and liquid in a pulsed fluidized bed. The simulation results are firstly validated against experimental data reported by Ehsani et al. Subsequently, the effects of pulsation flow on liquid–solid two-phase flow, particle collision and particle rotation behavior are studied. The results indicate that resonance fluidization occurs at a frequency of 1 Hz, which is approached to the natural frequency of the bed. Furthermore, the particle volume fraction increases with the pulsation amplitude at this frequency. Conversely, at a frequency of 36 Hz, the volume fraction exhibits the opposite trend with the pulsation amplitude. The interstitial fluid increases the dissipation of kinetic energy in particle collision, though its effect is much smaller than that caused by particle rotation.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104680"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zekai Chen , Chenyi Yuan , Weiman Hong , Rong Xie , Liangliang Zhou , Yangbiao Li , Zhenhua Chen
{"title":"Exploration of the formative mechanisms of colon-targeting composite particles of natural products prepared via mechanical dry particle coating","authors":"Zekai Chen , Chenyi Yuan , Weiman Hong , Rong Xie , Liangliang Zhou , Yangbiao Li , Zhenhua Chen","doi":"10.1016/j.apt.2024.104648","DOIUrl":"10.1016/j.apt.2024.104648","url":null,"abstract":"<div><div>Mechanical dry particle coating, coating fine particles in waterless environment, possesses great potential to prepare colon-targeting composite particles of natural products. However, host and guest particles physical properties may impact its surface coverage efficiency. This study selected 10 natural products and 4 colon-targeting excipients as host and guest particles, respectively, and characterized 13 physical properties. Using planetary ball mill, 40 composite particles were prepared and evaluated for SEM, infrared features, and in vitro release. Grey relation analysis, served as the core method, identified critical materials attributes of host and guest particle physical properties affecting the surface coverage and colon-targeting of composite particles. Results indicated that only 9 composite particles achieved favorable surface coverage and in vitro colon-targeting, like guar gum coated total saponins of Pulsatilla with respective surface area coverage and maximum cumulative drug release in colon of 76.71 % and 83.55 %, and revealed the prerequisite of well-covered structure of composite particle for colon-targeting. Identified critical material attributes, including particle size and specific surface area, etc., affected surface coverage efficiency through influencing interparticle forces for adhesion, particularly in van der Waals forces. Moreover, guest particle with favorable hydrophobicity may form a hydrophobic layer, preventing host particles from dissolving under well-covered structure.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104648"},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flotation separation scheelite from calcite by using a novel depressant of Poly(sodium 4-styrenesulfonate)","authors":"Jiali Chen, Peng Gao, Jie Liu, Yimin Zhu","doi":"10.1016/j.apt.2024.104664","DOIUrl":"10.1016/j.apt.2024.104664","url":null,"abstract":"<div><div>Scheelite and calcite was firstly separated by new depressant Poly(sodium 4-styrenesulfonate) (PSS) with NaOL system. The recovery of scheelite was 87.18 % and the recovery of calcite was 5.57 % in single flotation experiments, the recovery and grade of WO<sub>3</sub> was 70.53 % and 61.08 % respectively in artificial mixed ore flotation under the optimal conditions of 10 mg/L NaOL, 10 mg/L PSS and pH of 8. Contact angle measurements, atomic force microscope (AFM) analysis, zeta potential analysis, fourier transforming infrared spectra (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) analysis were performed to uncover the reaction mechanism. The results showed that PSS could not adsorbed on scheelite by chemical reaction, and PSS had no impact on the further adsorption of NaOL onto the scheelite surface. Therefore, scheelite could still keep a high recovery with PSS. However, PSS could be strongly adsorbed on calcite by chemisorption between the Ca site of calcite and O site of PSS, which increased the hydrophilia of calcite and imped the further adsorption of NaOL. Therefore, it could selectively depress the flotation of calcite.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104664"},"PeriodicalIF":4.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajashree Panda , Mitrabhanu Behera , Mahesha Hegde , R. Arun Kumar , R.K. Padhi , Anuradha M. Ashok , Neeraj Kumar Mishra , Kaushal Kumar
{"title":"Development of thermally stable, single-phased CaAl4O7:Dy3+ phosphor and a study on their down-conversion features for lighting applications","authors":"Rajashree Panda , Mitrabhanu Behera , Mahesha Hegde , R. Arun Kumar , R.K. Padhi , Anuradha M. Ashok , Neeraj Kumar Mishra , Kaushal Kumar","doi":"10.1016/j.apt.2024.104672","DOIUrl":"10.1016/j.apt.2024.104672","url":null,"abstract":"<div><div>This investigation underscores the structural, optical and temperature-dependent photoluminescence characteristics of CaAl<sub>4</sub>O<sub>7</sub>:Dy<sup>3+</sup>-doped phosphor synthesized via microwave-assisted combustion synthesis route for the first time. The sample crystallizes in monoclinic structure affirmed by XRD analysis. Morphological behaviour was conducted via SEM analysis. The existence of functional groups was validated through FTIR study. Bandgap of the optimized sample was established as 4.11 eV from the UV–VIS absorbance spectra. The emission spectra possessed characteristic peaks of Dy<sup>3+</sup> ion around 485 nm (blue), 576 nm (yellow) upon suitable excitation at 347 nm. The concentration of Dy<sup>3+</sup> ion at <em>x</em> = 0.03 was established to be optimal. The CIE chromaticity co-ordinate of (x = 0.347, y = 0.427), correlated color temperature of 5109 K and color purity of 32.87 % were inferred. The PL decay time for CaAl<sub>4</sub>O<sub>7</sub>:Dy<sup>3+</sup>(<em>x</em> = 0.03) phosphor was obtained as 0.31 ms. Excellent thermal stability of the sample was established from the temperature-dependent PL analysis. To assess the lighting ability of the phosphor, phosphor-in-glass (P-i-G) material was fabricated. Superior luminous efficacy (428 lm/W) and luminous efficiency (62.66 %) were established for the fabricated P-i-G. The outcome vividly declares the potency of the CaAl<sub>4</sub>O<sub>7</sub>:Dy<sup>3+</sup>phosphor as a promising contender for n-UV excited phosphors for wLED applications.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104672"},"PeriodicalIF":4.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teng Cheng, Jinxiang Wei, Hongwei Yu, Mingqing Tao, Minghao Mu, Bo Wang
{"title":"Improving the removal of fine particles in cyclone using heterogeneous vapor condensation enhanced by atomization","authors":"Teng Cheng, Jinxiang Wei, Hongwei Yu, Mingqing Tao, Minghao Mu, Bo Wang","doi":"10.1016/j.apt.2024.104684","DOIUrl":"10.1016/j.apt.2024.104684","url":null,"abstract":"<div><div>Using a heat exchanger to cool high humidity flue gas can create a supersaturated water vapor environment, allowing fine particles to grow into large droplets by heterogeneous vapor condensation, which is conductive to the removal of fine particles by traditional equipment. However, due to the limited condensable vapor obtained by cooling, this technology can only be used in the flue gas with low particle concentration. In this study, atomization droplets were added before the heat exchanger to improve the effect of heterogeneous vapor condensation at high particle concentration, and then coupled with a cyclone separator, which was used for the deep treatment of the flue gas after the wet dedusting system. The particle removal characteristics were investigated through laboratory experiments and bypass experiments in a metallurgical company. The experimental results show that the application of atomization-heterogeneous condensation reduced the particles concentration after cyclone by 74.2 % compared with that of single heterogeneous condensation. Temperature-drop and atomized volume affected the removal of particles with size < 2 μm and > 2 μm, respectively. The industrial flue gas bypass experiment indicated that the system had strong adaptability to fluctuating conditions. When the inlet particle concentration did not exceed 2000 mg/Nm<sup>3</sup>, the outlet particle concentration can be maintained within 20 mg/Nm<sup>3</sup>.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104684"},"PeriodicalIF":4.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S.K. Nikhil , Gopika Rajeev Nair , Abinash Das , Sebin Devasia , Ranjith G. Nair
{"title":"An experimental and theoretical validation of dual role of Fe on improving the photocatalytic performance of doped mixed phase titania","authors":"S.K. Nikhil , Gopika Rajeev Nair , Abinash Das , Sebin Devasia , Ranjith G. Nair","doi":"10.1016/j.apt.2024.104683","DOIUrl":"10.1016/j.apt.2024.104683","url":null,"abstract":"<div><div>The present work proposes a strategic approach of using Fe doping to form a mixed-phase TiO<sub>2</sub> direct Z-scheme catalyst at low onset temperature. The doping-induced modifications are explained from the experimental and theoretical viewpoint. Fe-doped Z-scheme-based mixed-phase TiO<sub>2</sub> at optimal calcination temperature (TiFe-400) exhibits maximum photon absorption and reduces charge carrier recombination, enhancing photocatalytic and PEC performance. TiFe-400 has the highest rate constant for the degradation of MB (0.084 min<sup>−1</sup> under solar irradiation) and showed exceptional photooxidation current (0.8 mA, 1.3 V vs Ag/AgCl). The Z-scheme formation significantly inhibits the recombination of photocarriers, resulting in a directed migration of charge carriers to the high redox potential mixed-phase TiO<sub>2</sub>. This migration is validated by identifying the primary reactive species participating in the photocatalytic process. This work, demonstrating both experimental and theoretical approaches, may provide valuable insight into designing stable and inexpensive catalysts for dual applications on an industrial scale.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104683"},"PeriodicalIF":4.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crack suppression during debinding of photocured green bodies comprising interparticle polymer cross-links with silane oligomers","authors":"Sayaka Yamada , Naonori Sakamoto , Junichi Tatami , Motoyuki Iijima","doi":"10.1016/j.apt.2024.104663","DOIUrl":"10.1016/j.apt.2024.104663","url":null,"abstract":"<div><div>Interparticle photo-cross-linkable suspension, which is a suspension photocurable via polymer cross-linking reaction among ceramic particles stabilized by a reactive polymer dispersant, is one of the promising materials to realize three-dimensional structuring of ceramic components through hybridized approaches of photocuring and green machining. Reactive silane oligomers functionalized with acryloyl groups (A-Si) have been reported to copolymerize in the interparticle cross-links, effectively inhibiting cracking during rapid debinding of green bodies. However, the role of A-Si in crack suppression during debinding remains poorly understood. Herein, the impact of A-Si copolymerization on the crack prevention of photo-cured bodies during rapid debinding is systematically investigated by high-temperature in situ three-point bending tests of photo-cured bodies and characterization of the microstructures and chemical structures of interparticle photo-crosslinks. Co-polymerization of A-Si in the cross-links improved the three-point bending strength of debinded bodies at 500–600 °C, where the green bodies without A-Si cracked. The prevention of cracking during debinding in samples containing A-Si was attributed to the generation of inorganic siloxane cross-links. This study provides a perspective on crafting machinable photo-cured green compacts, enabling their processing through time- and cost-effective rapid debinding methods.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104663"},"PeriodicalIF":4.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanyu Liang, Song Zhang, Yongjun Xian, Luzheng Chen
{"title":"Depressing molybdenite using calcium lignosulfonate in Cu-Mo flotation separation: Interaction and desorption insights","authors":"Guanyu Liang, Song Zhang, Yongjun Xian, Luzheng Chen","doi":"10.1016/j.apt.2024.104665","DOIUrl":"10.1016/j.apt.2024.104665","url":null,"abstract":"<div><div>This study investigated the potential mechanisms by which lignosulfonate selectively depresses the flotation of fine molybdenite during Cu–Mo flotation separation using ethyl potassium xanthate as a collector. The flotation tests confirmed that molybdenite was significantly depressed by calcium lignosulfonate, whereas chalcopyrite flotation was only slightly affected. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to explore the distinct interaction of lignosulfonates with the mineral surfaces: chelation/complexation occurred between the deprotonated oxygen-contained groups in calcium lignosulfonate with the exposed metal sites on the surface of chalcopyrite, whereas the hydrophobic interaction between calcium lignosulfonate and molybdenite was the main driving force of adsorption. Additionally, the adsorption experiments suggested that the calcium lignosulfonate previously adsorbed on chalcopyrite could be removed by treatment with ethyl potassium xanthate while there was a relatively small effect on the calcium lignosulfonate previously adsorbed on the surface of molybdenite. Therefore, depressing molybdenite and floating chalcopyrite achieved by using calcium lignosulfonate as the depressant and ethyl potassium xanthate as the collector.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104665"},"PeriodicalIF":4.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Zou, Liangliang Fu, Jia Song, Guangwen Xu, Dingrong Bai
{"title":"High-temperature thermochemical conversion of iron ore tailings into diopside and akermanite-based composite materials","authors":"Xu Zou, Liangliang Fu, Jia Song, Guangwen Xu, Dingrong Bai","doi":"10.1016/j.apt.2024.104670","DOIUrl":"10.1016/j.apt.2024.104670","url":null,"abstract":"<div><div>Iron ore tailings (IOTs), the residue materials generated during iron ore processing, pose environmental challenges due to their massive volume and potential impact on ecosystems. This study proposes a sustainable approach to manage and utilize this solid waste by converting it into value-added composite materials through high-temperature thermochemical reactions. Experiments are conducted in a tubular reactor at various reaction temperatures and times, and the resulting product samples are comprehensively characterized to elucidate their chemical compositional, physical, microstructural, thermal, and electrical properties. The results reveal that at optimal reaction temperatures (1230–1260 °C) and reaction times (20–120 min), the synthesized product is predominantly composed of diopside (CaMgSi<sub>2</sub>O<sub>6</sub>) and akermanite (Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>). Additionally, we demonstrate that the product can be diopside-rich or akermanite-rich when blending silica and MgO powders into the IOTs to control the starting material composition, opening a promising avenue for large-scale sustainable utilization of industrial solid waste.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104670"},"PeriodicalIF":4.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}