Engineering heterogeneous Z-scheme photocatalysts Fe-BTC/CuInS2/BiVO4 integrated with carbon quantum dots to enhance the efficiency of Cr(VI) reduction and RR-195 degradation under visible light
Nguyen Duc Hai , Pham Thi Mai Huong , Nguyen The Huu , Nguyen Xuan Huy , Vuong Thi Lan Anh , Hoa T. Vu , Huan V. Doan , Manh B. Nguyen
{"title":"Engineering heterogeneous Z-scheme photocatalysts Fe-BTC/CuInS2/BiVO4 integrated with carbon quantum dots to enhance the efficiency of Cr(VI) reduction and RR-195 degradation under visible light","authors":"Nguyen Duc Hai , Pham Thi Mai Huong , Nguyen The Huu , Nguyen Xuan Huy , Vuong Thi Lan Anh , Hoa T. Vu , Huan V. Doan , Manh B. Nguyen","doi":"10.1016/j.apt.2025.104938","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Fe-BTC/CuInS<sub>2</sub>/BiVO<sub>4</sub> composites (with Fe-BTC content ranging from 10 to 30 wt%) were synthesized followed by the incorporation of carbon quantum dots (CQDs) to form FCB-CQD photocatalysts. The resulting materials exhibit several key advantages, including high surface area, large pore volume, small particle size, efficient visible light absorption, and improved charge transport properties. The integration of CQDs significantly enhanced charge separation and reduced electron–hole recombination. A Z-scheme charge transfer mechanism was proposed and validated, enabling the FCB-CQD photocatalysts to achieve highly efficient photocatalytic reduction of Cr(VI) to Cr(III) and degradation of Reactive Red 195 (RR-195) under visible light. The 20%FCB-CQD sample achieved removal efficiencies exceeding 98 % for both pollutants. Key operational parameters, such as catalyst dosage, pollutant concentration, pH, reactive species involvement, and photocatalyst stability, were systematically investigated. Electrochemical and optical characterizations were used to construct the band structure and elucidate the electron transfer pathway. Scavenger experiments confirmed the dominant active species involved in each process, providing insight into the underlying photocatalytic mechanisms. These findings demonstrate the promising potential of FCB-CQD as an efficient and reusable photocatalyst for environmental remediation applications.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 8","pages":"Article 104938"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125001591","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Fe-BTC/CuInS2/BiVO4 composites (with Fe-BTC content ranging from 10 to 30 wt%) were synthesized followed by the incorporation of carbon quantum dots (CQDs) to form FCB-CQD photocatalysts. The resulting materials exhibit several key advantages, including high surface area, large pore volume, small particle size, efficient visible light absorption, and improved charge transport properties. The integration of CQDs significantly enhanced charge separation and reduced electron–hole recombination. A Z-scheme charge transfer mechanism was proposed and validated, enabling the FCB-CQD photocatalysts to achieve highly efficient photocatalytic reduction of Cr(VI) to Cr(III) and degradation of Reactive Red 195 (RR-195) under visible light. The 20%FCB-CQD sample achieved removal efficiencies exceeding 98 % for both pollutants. Key operational parameters, such as catalyst dosage, pollutant concentration, pH, reactive species involvement, and photocatalyst stability, were systematically investigated. Electrochemical and optical characterizations were used to construct the band structure and elucidate the electron transfer pathway. Scavenger experiments confirmed the dominant active species involved in each process, providing insight into the underlying photocatalytic mechanisms. These findings demonstrate the promising potential of FCB-CQD as an efficient and reusable photocatalyst for environmental remediation applications.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)