Songjiang Chen, Wanqi Ma, Jiawei Huang, Jiarui Wang, Ningning Zhang, Yuexian Yu, Zhanglei Zhu, Hong Wang, Zhen Li
{"title":"Exploration on the mechanism of enhancing flotation of long-flame coal by diesel modification via oxidation","authors":"Songjiang Chen, Wanqi Ma, Jiawei Huang, Jiarui Wang, Ningning Zhang, Yuexian Yu, Zhanglei Zhu, Hong Wang, Zhen Li","doi":"10.1016/j.apt.2024.104699","DOIUrl":"10.1016/j.apt.2024.104699","url":null,"abstract":"<div><div>Low-rank coal is naturally hydrophilic, and the traditional hydrocarbon collectors often have poor performance in its flotation. In this study, the modification of diesel was conducted using an instantaneous gasification-oxidation-condensation device for the expected improvement of collector’s performance. Experimental analyses and interfacial interaction calculation were performed to explore the mechanism of enhancing flotation of long-flame coal by diesel modification. It indicated that the flotation of coal sample can be greatly enhanced by the modified diesel, and a combustible matter recovery of 90.52 % could be attained only consuming 6 kg/t of modified diesel which was far better than the flotation effect consuming 100 kg/t of common diesel. The improved flotation effect of the coal sample could be attributed to the increased polarity of collector from 0.48 % to 9.76 % resulted from the newly added oxygenated functional groups after the oxidation of diesel, which significantly enhanced the adsorption capacity of the collector on the long-flame coal surface reflected by the FTIR and XPS analyses. Furthermore, the calculated results of interfacial interaction between the coal sample and the common/modified diesel suggested that the efficient adsorption of modified diesel on the coal sample was achieved through the bridging role acted by water molecules. This research may give some insight into enhancing flotation of low-rank coal.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104699"},"PeriodicalIF":4.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Yan , Xue Liu , Jiatong Liu , Yang Liu , Guohui Li , Lixing Zhou
{"title":"A Euler-Euler hydrodynamic modelling and simulation of dense particle flow in a small-scale fluidized bed","authors":"Zhao Yan , Xue Liu , Jiatong Liu , Yang Liu , Guohui Li , Lixing Zhou","doi":"10.1016/j.apt.2024.104691","DOIUrl":"10.1016/j.apt.2024.104691","url":null,"abstract":"<div><div>Large eddy simulation of dense particle flow in fluidized bed is an advanced strategy to acquire a better understanding mechanism of gas-particle two-phase turbulent flow. A novelty particle stress model at subgrid scale level based on the Euler-Euler two-fluid frame is proposed to consider the effect of gas flow on particle dynamics. Anisotropic dispersion of interactions between gas and particle is modeled by a developed second-order moment approach, the four-way coupling is used to combine the particle–particle collisions by using the particle granular temperature based on the kinetic theory of granular flow. Numerical simulation is carried out in a small-scale fluidized bed and predictions are well agreed with the experimental data. Results show that the evolution of core-annular flow structure is captured. Increased superficial gas velocity is favorable for the enhancement of bubble hydrodynamics and anisotropic particle dispersions. At the 4u<sub>mf</sub>, Bubblelike granular temperature is 11.2 times larger than particle granular temperature, and mean and standard deviation values of axial particle velocity are approximately 2.2 times and 1.5 times larger than those of 2u<sub>mf</sub>. Bubble motions have a great effect on the heterogeneous flow pattern, particle dynamics and the redistribution of particle Reynolds stresses.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104691"},"PeriodicalIF":4.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Zhang , Yanchao Wang , Chi Zhang , Shuren Wang
{"title":"DEM investigation of particle gradation effect on the stress-dilatancy behavior of granular soil","authors":"Tao Zhang , Yanchao Wang , Chi Zhang , Shuren Wang","doi":"10.1016/j.apt.2024.104692","DOIUrl":"10.1016/j.apt.2024.104692","url":null,"abstract":"<div><div>Particle gradation effect on the shear-dilatancy of granular soils was studied through a series of drained triaxial tests using the discrete element and finite difference methods (PFC<sup>3D</sup>-FLAC<sup>3D</sup>). Spherical particles with different coefficients of uniformity <em>C<sub>u</sub></em> and median particle sizes <em>D</em><sub>50</sub> were assembled to exclude the strong size-shape correlation in natural sands. Four groups of <em>C<sub>u</sub></em> and four groups of <em>D</em><sub>50</sub> at the same void ratio <em>e<sub>c</sub></em> prior to shearing, and seven more groups with the same void ratio <em>e</em><sub>0</sub> prior to isotropic compression were tested. Various mechanical behaviors were analyzed, including the stress–strain response, the stress-dilatancy response, friction angle, and fabric anisotropy. <em>C<sub>u</sub></em> significantly influences the peak friction angle, the maximum dilation angle, and the anisotropies of normal contact force and contact normal, whereas these are almost independent of <em>D</em><sub>50</sub>. The contribution of the maximum rate of dilation to the excess friction angle is largely independent of <em>C<sub>u</sub></em> and <em>D</em><sub>50</sub> for spherical particles.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104692"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan-Hong Chen , Qiang Zhang , Dong-Min Han , Chao-He Y
{"title":"Fluoride- and OSDA-free synthesis of ZSM-5 with controllable b-axis orientation: Insights into the role of medium alkalinity and seed induction","authors":"Yan-Hong Chen , Qiang Zhang , Dong-Min Han , Chao-He Y","doi":"10.1016/j.apt.2024.104698","DOIUrl":"10.1016/j.apt.2024.104698","url":null,"abstract":"<div><div>MFI-topology nanosheets with a b-axis-oriented structure are valuable catalysts in diffusion-controlled acid-catalyzed reactions. Therefore, b-axis-oriented ZSM-5 nanosheets were synthesized herein in a fluoride-free solution without using special additives and complex methods. The initial gel pH of mixed raw materials was adjusted to approximately 5–7 (weak acidity) to direct nanosheet structure formation. The target ZSM-5 zeolite with a b-axis-oriented structure was achieved through the synergistic effect between the involved gel pH and seed solution. The seed solution directed the formation of an MFI structure, and the low alkalinity of the gel limited crystal growth in the b plane, thereby affording b-axis-oriented thin sheets. The ratio of the lengths of the c and b axes of the obtained ZSM-5 could be effectively tuned by adjusting the pH of the initial gel. Compared with the nanosized hexagonal ZSM-5 sample synthesized in a strong-basic system, the as-synthesized b-axis-oriented ZSM-5 exhibited a lower coking rate and higher propylene yield during the considered 1-hexene cracking reaction.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104698"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuelan Li , Jun Lei , Henghuan Ruan , Tianman Wang , Lin Wang , Weiyue Gao , Sen Liao , Yingheng Huang
{"title":"Rapid synthesis of environmentally friendly submicron K2SiF6:Mn4+ phosphors: Advancing micro-LED technology","authors":"Yuelan Li , Jun Lei , Henghuan Ruan , Tianman Wang , Lin Wang , Weiyue Gao , Sen Liao , Yingheng Huang","doi":"10.1016/j.apt.2024.104687","DOIUrl":"10.1016/j.apt.2024.104687","url":null,"abstract":"<div><div>The development of light-emitting diode (LED) technology has intensified the requirements for the particle size of the K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> phosphor. However, the synthesis technology of the K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> phosphor possessing small particle sizes remains underdeveloped, rendering it difficult to fulfill the development requirements of display technology. This study presents an ammonium salt–assisted synthesis strategy for the rapid and hydrofluoric acid–free synthesis of submicron-sized K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup>, achieving an internal quantum yield of 98 % and average particle size of ∼ 200 nm. The synthesized material demonstrates excellent thermal stability, and its luminous intensity at 423 K is 136 % higher than that at 298 K, which is attributed to a negative thermal quenching effect. A high-performance white LED prepared using the as-developed material as the red-light-generation component exhibited a luminous efficacy of 113 lm/W and color rendering index of 93. Furthermore, the fluorescent inks developed using the prepared submicron phosphors can be utilized for screen printing. In summary, this study introduces a method for the ecofriendly, efficient, and cost-effective synthesis of submicron Mn<sup>4+</sup>-doped fluoride phosphors. Moreover, it presents a potential red fluorescent material for application in the development of full-color micro-LEDs.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104687"},"PeriodicalIF":4.2,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuyan Xue , Changshuai Gong , Sihan Yang , Qian Zhang , Jian He , Xuejiao Wang , Ji-Guang Li
{"title":"Self deep red luminescence in NaLaCaWO6 double perovskite, properties regulation via Er3+ doping, and applications in favorable optical thermometry with ultra high relative sensitivity and plant lighting","authors":"Xuyan Xue , Changshuai Gong , Sihan Yang , Qian Zhang , Jian He , Xuejiao Wang , Ji-Guang Li","doi":"10.1016/j.apt.2024.104688","DOIUrl":"10.1016/j.apt.2024.104688","url":null,"abstract":"<div><div>Self deep red emission was found for the first time in NaLaCaWO<sub>6</sub> double perovskite which was synthesized <em>via</em> solid-state reaction, and the luminescence was effectively enhanced and regulated <em>via</em> Er<sup>3+</sup> doping. A comprehensive analysis of the calcination atmosphere dependent photoluminescence, X-ray photoelectron spectroscopy, and electron paramagnetic resonance revealed that the deep red luminescence is particularly related to oxygen defects of oxygen interstitials. The plant growth lighting and the optical thermometry performance of the materials were systematically investigated. Under 360 nm or 502 nm excitation, the pristine NaLaCaWO<sub>6</sub> exhibits deep red emission at 690 nm that nicely matches the photosensitive pigment (P<sub>FR</sub>) essential for plant growth. The deep red luminescence of NaLaCaWO<sub>6</sub> was 230 % increased by Er<sup>3+</sup> doping. Moreover, deep red emission of the host and green emission of the Er<sup>3+</sup> shows extinguished different temperature depend luminescence behavior, and dual-mode optical thermometry with ultra high relative sensitivity (<em>S<sub>r</sub></em>) was built based on the materials. Remarkably, the maximum <em>S<sub>r</sub></em> based on the fluorescence intensity ratio (FIR) mode reached 3.84 % K<sup>−1</sup> (498 K), and maximum <em>S<sub>r</sub></em> is as high as 13.1 % K<sup>−1</sup> (548 K) when based on the fluorescence lifetime (FL) mode. The results indicate that the NaLaCaWO<sub>6</sub>:Er<sup>3+</sup> phosphor shows promising potential application in the field of plant growth and optical temperature sensing.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104688"},"PeriodicalIF":4.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Qiu , Xue-Li Yang , Zi-Xuan Zhao , Qiu-Ping Luo , Ling Chen , Jun Du , Xing Fan , Bing-Xin Lei
{"title":"Water-induced formation of Cs2AgBiBr6/BiOBr heterostructure with enhanced visible-light photocatalytic activity","authors":"Min Qiu , Xue-Li Yang , Zi-Xuan Zhao , Qiu-Ping Luo , Ling Chen , Jun Du , Xing Fan , Bing-Xin Lei","doi":"10.1016/j.apt.2024.104679","DOIUrl":"10.1016/j.apt.2024.104679","url":null,"abstract":"<div><div>The separation and transfer of photogenerated charges are limited by the deep energy defects and high exciton binding energy of Cs<sub>2</sub>AgBiBr<sub>6</sub> (CABB). The creation of heterostructure is a great promising path to solve this obstacle. In this paper, BiOBr (BOB) nanosheets epitaxially grew on the surface of CABB octahedrons through immersing CABB into in water-solution with the assistance of ethanol, thereby creating an interesting CABB/BOB heterojunction. The CABB/BOB heterostructure markedly enhances water stability, preserving its structure and morphology even after being submerged in a mixture of ethanol and water for 100 h. The CABB/BOB photocatalyst exhibited significantly enhanced photocatalytic activity towards the degradation of Rhodamine B in comparison to its individual pristine components, namely CABB and BOB. Specifically, the advanced CABB/BOB−90 photocatalyst attains a degradation efficiency of 98 % within 40 min, significantly surpassing the initial CABB and BOB photocatalysts by approximately 1.3 and 4.1 times, respectively. The heightened photocatalytic activity is attributable to the formation of a tightly integrated heterojunction interface, which promotes the efficient separation of charge carriers.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104679"},"PeriodicalIF":4.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Song , Jin Wang , Hang Su , Miao Liu , Rucheng Wang , Liwen Hu , Weizao Liu , Xuewei Lv , Yuntao Xin
{"title":"An innovative process for clean ammonium-free vanadium precipitation and one-step preparation of vanadium dioxide based on hydrothermal enhancement of organic alcohols","authors":"Kun Song , Jin Wang , Hang Su , Miao Liu , Rucheng Wang , Liwen Hu , Weizao Liu , Xuewei Lv , Yuntao Xin","doi":"10.1016/j.apt.2024.104682","DOIUrl":"10.1016/j.apt.2024.104682","url":null,"abstract":"<div><div>As a transition metal oxide, VO<sub>2</sub> has excellent optical and electrical properties and is widely used in many fields. The production of VO<sub>2</sub> by the reduction of NH<sub>4</sub>VO<sub>3</sub> and V<sub>2</sub>O<sub>5</sub> will inevitably produce ammonia–nitrogen wastewater and NH<sub>3</sub> emission during the production of NH<sub>4</sub>VO<sub>3</sub> and V<sub>2</sub>O<sub>5</sub>, which will cause serious environmental pollution and will increase economic costs. The large-scale and low-cost synthesis of VO<sub>2</sub> still faces great challenges. In this paper, VO<sub>2</sub>(B) was successfully prepared by a one-step hydrothermal method using NaVO<sub>3</sub> as the vanadium source and CH<sub>3</sub>CH<sub>2</sub>OH as the reducing agent, and the optimal conditions for vanadium precipitation are as follows: vanadium concentration = 30 g/L, CH<sub>3</sub>CH<sub>2</sub>OH dosage = 20 % (percentage of solution volume), initial pH = 1, reaction temperature = 220 °C, reaction time = 12 h. The vanadium precipitation efficiency under the optimal conditions could reach 98.93 %, and the purity of VO<sub>2</sub>(B) could reach 98.59 %. The precipitation products were characterized by XRD, TG, FTIR, XPS, and SEM-EDS. The mechanism of VO<sub>2</sub>(B) preparation by ethanol reduction was proposed. This process is characterized by green, clean, and high efficiency. At the same time, the vanadium precipitation effect and vanadium precipitation products of various alcohols were studied to provide technical and theoretical support for the preparation of VO<sub>2</sub>(B).</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104682"},"PeriodicalIF":4.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayana Gotoh , Eriko Yamazoe , Takaaki Ito , Yoko Koide , Mayumi Yamada , Yasuhiro Shimada , Kohei Tahara
{"title":"Effects of excipient properties on pharmaceutical printlet fabrication via selective laser sintering 3D printing","authors":"Ayana Gotoh , Eriko Yamazoe , Takaaki Ito , Yoko Koide , Mayumi Yamada , Yasuhiro Shimada , Kohei Tahara","doi":"10.1016/j.apt.2024.104678","DOIUrl":"10.1016/j.apt.2024.104678","url":null,"abstract":"<div><div>In this study, the impact of excipients on the quality of printlets manufactured using selective laser sintering (SLS) 3D printing was investigated. Various thermoplastic polymers, commonly used as pharmaceutical additives, and mannitol of different particle property grades, were used as excipients. SLS can produce complex structures and customize drug release rates; therefore, it can be used for personalized medicine. The significance of selecting suitable excipients, focusing on their powder flowability and printability, and their influence on the printlet properties was evaluated. An optimal amount of yellow iron oxide, a necessary laser-absorbing agent for printlet formation, was determined. Results revealed that excipients with optimal flow and shape characteristics considerably enhanced the printlet quality. The relation between the powder properties of excipients (internal friction angle, shear adhesion force, and flow function coefficient) and the SLS printing outcomes was evaluated using the powder shear cell test. The powder properties considerably affected the application of the powder layer using a spreader from the powder reservoir to the building platform. Moreover, the electron laser density impacted the printlet hardness. The as-fabricated printlets exhibited higher porosity and faster dissolution rates than traditional tablets, suggesting the potential advantages of using SLS in drug manufacturing.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104678"},"PeriodicalIF":4.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Chen , Wenqi Zhong , Shuguang Liu , Theodore J. Heindel
{"title":"X-ray computed tomography (XCT) study of jetting in a fluidized bed: Measurement method development and single component fluidization","authors":"Xi Chen , Wenqi Zhong , Shuguang Liu , Theodore J. Heindel","doi":"10.1016/j.apt.2024.104681","DOIUrl":"10.1016/j.apt.2024.104681","url":null,"abstract":"<div><div>Air injected into a fluidized bed through a perforated plate distributor may form individual jets above the distributor plate, which can have a significant impact on the gas–solid flow and heat/mass transfer in the dense phase region. Therefore, it is important to study the jetting characteristics in a fluidized bed, but the measurement of such jets is extremely challenging because of the opaque dense phase region. In this paper, an X-ray computed tomography (XCT) measurement system was constructed, and three-dimensional reconstruction software based on the cone beam filtered back projection algorithm (FDK) was implemented. A jet recognition and quantification algorithm was also developed and tested. Based on these methods, the influence of the jet velocity (<em>U</em><sub>j</sub>) and bed material size (<em>d</em><sub>p</sub>) on the structure and shape of the jets was studied. The results show that when the jet velocity increases, the average jet length (<em>L</em>), jet maximum diameter (<em>D</em>), and jet volume (<em>V</em>) increase, while the average jet half angle (<em>θ</em>) fluctuates around a constant value. Under the same jet velocity (<em>U</em><sub>j</sub>), the average jet length (<em>L</em>), jet maximum diameter (<em>D</em>), and jet volume (<em>V</em>) are inversely proportional to the bed material size (<em>d</em><sub>p</sub>), while the average jet half angle (<em>θ</em>) is directly proportional to the bed material size (<em>d</em><sub>p</sub>). Finally, a correlation for jet length (<em>L</em>) in a fluidized bed is proposed. This study provides a new characterization method for jetting in a fluidized bed, and offers unique experimental data for CFD model validation in fluidized bed simulations.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104681"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}