Applications in engineering science最新文献

筛选
英文 中文
Lattice Boltzmann simulations of unsteady Bingham fluid flows 非稳态宾汉流体流动的晶格玻尔兹曼模拟
IF 2.2
Applications in engineering science Pub Date : 2024-10-01 DOI: 10.1016/j.apples.2024.100199
Alan Lugarini, Marco A. Ferrari, Admilson T. Franco
{"title":"Lattice Boltzmann simulations of unsteady Bingham fluid flows","authors":"Alan Lugarini,&nbsp;Marco A. Ferrari,&nbsp;Admilson T. Franco","doi":"10.1016/j.apples.2024.100199","DOIUrl":"10.1016/j.apples.2024.100199","url":null,"abstract":"<div><div>Transient flows of viscoplastic fluids have very peculiar characteristics. The startup and cessation flows of viscoplastic materials have been subject to many theoretical and numerical investigations. The most challenging aspect of numerical solutions of viscoplastic fluids is the viscosity singularity during the transition from yielded to unyielded material. Hence, the proper representation of yield surfaces is the most critical aspect of numerical methods in viscoplastic fluid flow. In the present work, we use a lattice Boltzmann scheme to solve an ideal Bingham fluid’s startup and cessation flows. This numerical scheme advantage is that can represent infinite viscosity without noticeable numerical instabilities, producing yield surfaces with more accuracy and quality. Theoretical solutions for the startup flow are available in the literature. However, it is unclear which is more accurate and what their validity ranges are. Nonetheless, these solutions served as a reference for the present simulations. The overall aspect of the numerical solutions agreed with the theoretical models. The cessation flow of the Bingham fluid was also simulated. Unlike a Newtonian fluid, this type of flow is known to have a finite period until cessation. The simulations correctly reproduced this behavior. The transient yield surfaces matched very well with augmented Lagrangian solutions.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100199"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger 管式热交换器中轴向穿孔多矩形导流板式挡板的热流体性能
IF 2.2
Applications in engineering science Pub Date : 2024-09-27 DOI: 10.1016/j.apples.2024.100197
Md Atiqur Rahman
{"title":"Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger","authors":"Md Atiqur Rahman","doi":"10.1016/j.apples.2024.100197","DOIUrl":"10.1016/j.apples.2024.100197","url":null,"abstract":"<div><div>The study investigated an unconventional heat exchanger design that utilizes swirling airflow to enhance heat transfer over heated tubes. This innovative system incorporates a perforated round baffle plate, accompanied by multiple rectangular air deflectors oriented in opposite directions at varying inclination angles. These deflectors are symmetrically arranged at different pitch ratios alongside consistently spaced tubes forming a circular configuration, all subject to a uniform heat flux. Enclosed within a circular duct with longitudinal airflow, the combined baffle plate and tube assembly bring forth efficient heat transfer. The air-side turbulence intensified by the deflectors induces a chaotic motion, contributing to enhanced surface heat transfer. Each baffle plate has twelve opposite-oriented deflectors, resulting in opposing swirl flows that further promote flow recirculation and augment surface heat transfer. The performance of this heat exchanger was evaluated by considering different pitch ratios and inclination angles across a Reynolds number range of 16000-30000. The findings demonstrate that the heat exchanger with rectangular flow deflectors on the baffle plate exhibits significant improvements in thermo-fluid performance. Notably, an average enhancement of 1.88 was observed at an inclination angle of 50 degrees and a pitch ratio of 1.2 when compared to an exchanger without baffle plates, emphasizing the considerable impact of these design aspects.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100197"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equations of state and hysteresis loops in isothermal cavitation 等温空化中的状态方程和滞后环
IF 2.2
Applications in engineering science Pub Date : 2024-09-01 DOI: 10.1016/j.apples.2024.100195
Alexandre Hastenreiter Assumpção , Felipe Bastos de Freitas Rachid , Maria Laura Martins-Costa , Rogério Martins Saldanha da Gama
{"title":"Equations of state and hysteresis loops in isothermal cavitation","authors":"Alexandre Hastenreiter Assumpção ,&nbsp;Felipe Bastos de Freitas Rachid ,&nbsp;Maria Laura Martins-Costa ,&nbsp;Rogério Martins Saldanha da Gama","doi":"10.1016/j.apples.2024.100195","DOIUrl":"10.1016/j.apples.2024.100195","url":null,"abstract":"<div><p>This paper investigates the influence of the use of the cubic equation of state (EOS) in the isothermal cavitation of compressible fluids. To do so, a thermodynamic consistent cavitation model that was recently proposed has been used. This model is derived under the Thermodynamics of Irreversible Processes and considers the irreversible dissipative character of the phase change transformation. Numerical simulations carried out using linear and cubic EOS are presented and compared. Neglecting surface tension effects, the results obtained demonstrate that there is no significant difference between the responses of these two types of EOS for water up to saturation pressures up to about 200 kPa. Hysteresis loops observed in the simulations with both types of EOS are virtually the same. It suggests that linear EOSs can provide good approximations for metastable behaviors (intrinsically present in cubic EOS) as well as for the Gibbs free energy difference (the thermodynamic force associated with irreversible phase change transformation), rendering a great simplification in the analysis.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100195"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000219/pdfft?md5=e5daf3c8c37531805cf3d906562cdb3b&pid=1-s2.0-S2666496824000219-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress H(div)-conforming and discontinuous Galerkin approach for Herschel-Bulkley flow with density-dependent viscosity and yield stress(具有密度粘度和屈服应力的 Herschel-Bulkley 流动的 H(div)-conforming 和不连续伽勒金方法
IF 2.2
Applications in engineering science Pub Date : 2024-09-01 DOI: 10.1016/j.apples.2024.100193
Sergio González-Andrade , Paul E. Méndez Silva
{"title":"H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress","authors":"Sergio González-Andrade ,&nbsp;Paul E. Méndez Silva","doi":"10.1016/j.apples.2024.100193","DOIUrl":"10.1016/j.apples.2024.100193","url":null,"abstract":"<div><p>This paper presents a comprehensive study on Herschel–Bulkley flow, where the flow parameters are dependent on the density. The Herschel–Bulkley model is a generalized power-law model used to simulate viscoplastic fluids defined by a plasticity threshold. We consider the case where the plasticity threshold and the viscosity depend on the shear rate and fluid density. To analyze this model, we use a Huber regularization of the stress and propose an H(div)-conforming and discontinuous Galerkin (DG) numerical approximation for the coupled equations governing the flow. We discuss the stability and existence of discrete solutions and propose a semismooth Newton linearization for the numerical solution of the discretized system. Our numerical scheme is validated through several experiments that explore the behavior of Herschel–Bulkley flow under different conditions. The results demonstrate the robustness of our numerical method.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100193"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000190/pdfft?md5=9c9483593e5fb0dcb26150f6a60f8392&pid=1-s2.0-S2666496824000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of fully developed pipe flow of a shear-thinning fluid that approximates the response of viscoplastic fluids 近似于粘塑性流体响应的剪切稀化流体完全发展管道流动的稳定性
IF 2.2
Applications in engineering science Pub Date : 2024-09-01 DOI: 10.1016/j.apples.2024.100191
Mohan Anand , Paluri Kiranmai , Sai Manikiran Garimella
{"title":"Stability of fully developed pipe flow of a shear-thinning fluid that approximates the response of viscoplastic fluids","authors":"Mohan Anand ,&nbsp;Paluri Kiranmai ,&nbsp;Sai Manikiran Garimella","doi":"10.1016/j.apples.2024.100191","DOIUrl":"10.1016/j.apples.2024.100191","url":null,"abstract":"<div><p>The stability of steady, fully developed flow in a long cylindrical pipe for a shear-thinning fluid (which approximates a class of viscoplastic materials) is studied using linear stability analysis. The eigenvalues of the frequency of the perturbation of the steady-state solution are obtained using the shooting method. The eigenvalues are negative in the Reynolds number range studied and asymptotically tend to zero as the Reynolds number increases. This shows the pipe flow is stable in the Reynolds number range studied. A qualitatively similar trend is shown by the eigenvalues of a Navier–Stokes fluid of equivalent viscosity. However, the eigenvalues are much lesser than those of the shear-thinning fluid, and this shows that the flow of the Navier–Stokes fluid can be expected to be stable over a much larger Reynolds number range than the shear-thinning fluid.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100191"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000177/pdfft?md5=923dbb250daeae3b26cf2fac6af47f9e&pid=1-s2.0-S2666496824000177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Horizontal buoyant jets into viscoplastic ambient fluids 水平浮力射流进入粘性环境流体
IF 2.2
Applications in engineering science Pub Date : 2024-08-30 DOI: 10.1016/j.apples.2024.100192
M.H. Moosavi, H. Hassanzadeh, S.M. Taghavi
{"title":"Horizontal buoyant jets into viscoplastic ambient fluids","authors":"M.H. Moosavi,&nbsp;H. Hassanzadeh,&nbsp;S.M. Taghavi","doi":"10.1016/j.apples.2024.100192","DOIUrl":"10.1016/j.apples.2024.100192","url":null,"abstract":"<div><p>This study investigates the horizontal injection of a heavy Newtonian fluid into a lighter viscoplastic ambient fluid, in a large reservoir. The flow dynamics is experimentally captured via camera imaging, laser-induced fluorescence, and particle image velocimetry techniques. The flow parameters include various density differences, injection velocities, and ambient fluid viscoplastic properties. Our analysis identifies two key dimensionless numbers, the Froude number (<span><math><mrow><mi>F</mi><mi>r</mi></mrow></math></span>) and the effective viscosity ratio (<span><math><mi>m</mi></math></span>), which includes the rheology of the viscoplastic fluid. Our study also examines the effects of these dimensionless numbers on critical jet characteristics, such as bifurcation length, transition length, deviation length, and jet trajectory, and provides correlations using <span><math><mrow><mi>F</mi><mi>r</mi></mrow></math></span> and <span><math><mi>m</mi></math></span>, to predict these characteristic lengths. A regime classification based on the bifurcation phenomenon is also presented in the <span><math><mrow><mi>F</mi><mi>r</mi><mo>−</mo><mi>m</mi></mrow></math></span> plane.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100192"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000189/pdfft?md5=f3e2a053c708ede1fce953faf73d42c7&pid=1-s2.0-S2666496824000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological modelling of train-track-ground: A review covering core concepts, materials and applications 火车轨道地面流变模型:核心概念、材料和应用综述
IF 2.2
Applications in engineering science Pub Date : 2024-08-22 DOI: 10.1016/j.apples.2024.100194
Hafsa Farooq, Sanjay Nimbalkar
{"title":"Rheological modelling of train-track-ground: A review covering core concepts, materials and applications","authors":"Hafsa Farooq,&nbsp;Sanjay Nimbalkar","doi":"10.1016/j.apples.2024.100194","DOIUrl":"10.1016/j.apples.2024.100194","url":null,"abstract":"<div><p>Rheological models capture the behaviour of soil structures and effectively evaluate the response of various transport corridors. These models represent the elastic and plastic behaviour of a structure. This paper reviews several rheological models that incorporate elasticity, viscosity, and plasticity principles. The review encompasses various rheological models developed as viscoelastic, elastoplastic, viscoplastic, elastoviscoplastic and viscoelastoplastic models, specifically for a better understanding of high-speed rail dynamics. Analytical solutions for these models are elaborated, focusing on the behaviour of soil structures and the interaction of layers, particularly in scenarios involving two or more layers. Additionally, detailed discussions cover the results and interpretations of various studies on these rheological models.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100194"},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000207/pdfft?md5=293bc529f86ba8330f8ebe0b30f383b2&pid=1-s2.0-S2666496824000207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic origami solar eyes with tensegrity architecture for energy harvesting Mashrabiyas 采用张弦结构的动态折纸太阳眼用于能量收集 Mashrabiyas
IF 2.2
Applications in engineering science Pub Date : 2024-08-13 DOI: 10.1016/j.apples.2024.100190
Fernando Fraternali , Enrico Babilio , Rana Nazifi Charandabi , Giovanni Germano , Raimondo Luciano , Giovanni Spagnuolo
{"title":"Dynamic origami solar eyes with tensegrity architecture for energy harvesting Mashrabiyas","authors":"Fernando Fraternali ,&nbsp;Enrico Babilio ,&nbsp;Rana Nazifi Charandabi ,&nbsp;Giovanni Germano ,&nbsp;Raimondo Luciano ,&nbsp;Giovanni Spagnuolo","doi":"10.1016/j.apples.2024.100190","DOIUrl":"10.1016/j.apples.2024.100190","url":null,"abstract":"<div><p>Mashrabiya are oriel windows characteristic of Islamic architectural tradition that were historically integrated into buildings located in places with arid climates. The present paper formulates a novel design approach to Mashrabiya systems, by employing origami modules equipped with photovoltaic cells. The examined oriel window is able to complement the main traditional functions of a Mashrabiya with solar energy harvesting. A primary folding motion of the origami modules designed to tessellate its surface permits the sunlight to pass through the system in a controlled way. A secondary tilting folding motion of the photovoltaic cells placed on these modules lets the system harvest solar energy and produce electric power. The paper illustrates the architectural and mechanical design of the examined Mashrabiya window, as well as its energy harvesting properties, using both numerical and experimental methods.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100190"},"PeriodicalIF":2.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000165/pdfft?md5=fe51e6f5604e7277421e1554c0f2c710&pid=1-s2.0-S2666496824000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in nano-modified concrete: Enhancing durability, strength, and sustainability through nano silica (nS) and nano titanium (nT) incorporation 纳米改性混凝土的最新进展:通过加入纳米二氧化硅(nS)和纳米钛(nT)提高耐久性、强度和可持续性
IF 2.2
Applications in engineering science Pub Date : 2024-08-10 DOI: 10.1016/j.apples.2024.100189
John Olajide Tanimola, Steve Efe
{"title":"Recent advances in nano-modified concrete: Enhancing durability, strength, and sustainability through nano silica (nS) and nano titanium (nT) incorporation","authors":"John Olajide Tanimola,&nbsp;Steve Efe","doi":"10.1016/j.apples.2024.100189","DOIUrl":"10.1016/j.apples.2024.100189","url":null,"abstract":"<div><p>Concrete, essential to global infrastructure, confronts urgent environmental challenges due to its high carbon footprint and resource-intensive production. In response, researchers are exploring nanoparticles, such as nano-silica (nS) and nano-titanium dioxide (nT), to enhance sustainability and performance. This review examines recent advances in their application. Nano-silica, prized for rapid hydration and enhanced strength, emerges as a promising additive. Studies indicate nS accelerates cement hydration, densifies the matrix, and improves durability and impermeability. Silica-based nano-coatings on glass textile-reinforced composites bolster bond strength and resilience. Similarly, nT offers diverse benefits to concrete. Beyond its traditional applications in photocatalysis, nS has been proven to refine pore structure, increase compressive strength, and enhance resistance to elevated temperatures. Additionally, nT adds to the self-cleaning properties of concrete surfaces, making it a promising additive for sustainable construction practices. Despite these advancements, challenges persist in the effective dispersion of nanoparticles within concrete matrices and ensuring their economic feasibility and regulatory compliance. Addressing these challenges will require interdisciplinary collaboration and innovative approaches to optimize dispersion methods, mitigate health risks, and develop robust regulatory frameworks. Future research directions should focus on developing multifunctional nanomaterials capable of imparting multiple desirable properties to concrete simultaneously, such as self-sensing, self-cleaning, and energy harvesting capabilities. Furthermore, efforts to optimize manufacturing processes and scale up production will be essential to realizing the full potential of nano-modified concrete in addressing the sustainability challenges facing the construction industry.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100189"},"PeriodicalIF":2.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000153/pdfft?md5=b1351d571f08a2058867b2cb9775b5ee&pid=1-s2.0-S2666496824000153-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulating strain-based quadrilateral membrane finite elements with drilling rotations 制定带钻孔旋转的基于应变的四边形膜有限元
IF 2.2
Applications in engineering science Pub Date : 2024-07-25 DOI: 10.1016/j.apples.2024.100188
Wei Hao Koh, Logah Perumal, Chee Kuang Kok
{"title":"Formulating strain-based quadrilateral membrane finite elements with drilling rotations","authors":"Wei Hao Koh,&nbsp;Logah Perumal,&nbsp;Chee Kuang Kok","doi":"10.1016/j.apples.2024.100188","DOIUrl":"10.1016/j.apples.2024.100188","url":null,"abstract":"<div><p>Membrane finite elements with drilling degrees of freedom have sparked interest in many research works since they can be conveniently combined with plates to form shell elements. This study presents two non-conforming strain-based four-node quadrilateral membrane elements, SBQ13 and SBQ13E, for static analysis. SBQ13 partially satisfies the equilibrium equations, while SBQ13E completely fulfils the force balance equations. Both elements carry drilling rotations at each node. One difficulty when formulating quadrilateral elements is the singularity in the transformation matrix, which is addressed in this study by utilising the properties of singular matrices. Both quadrilateral elements were tested in several benchmark problems. It has been found that both elements passed the higher-order patch test but failed the constant stress patch test. Nevertheless, SBQ13 produced accurate responses in most numerical tests, but SBQ13E unreasonably overestimated the solution. Solving the eigenvalue problem revealed that the SBQ13E element has a near-zero energy deformation mode, which might explain the anomaly. Although fulfilling equilibrium does not always enhance solution accuracy, it is essential to overcome volumetric locking. Apart from the newly developed elements, this paper presents several new ideas that may apply to strain-based element formulations.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100188"},"PeriodicalIF":2.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000141/pdfft?md5=c55236c88efe924d5c637c0e39b234b8&pid=1-s2.0-S2666496824000141-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信