{"title":"Low-cost pulse generating system for activating adipose-derived cells in 3D-printed microfluidics","authors":"Marlene Wahlmueller , Bianca Buchegger , Cyrill Slezak , Heinz Redl , Susanne Wolbank , Eleni Priglinger , Armin Hochreiner","doi":"10.1016/j.apples.2025.100216","DOIUrl":"10.1016/j.apples.2025.100216","url":null,"abstract":"<div><div>The success of cell-based therapies strongly depends on the regenerative capacity of patient-derived cells, which can vary widely. Enhancing cell potency is therefore critical, especially for autologous applications. Biophysical treatment e.g. extracorporeal shockwave therapy (ESWT) has emerged as a promising tool to enhance the regenerative potential of cells and has been applied in clinical practice for the treatment of several diseases. We developed a novel, low-cost, small and adaptable multi-mode pulse generating system (PGS) that enables direct treatment of cells in 3D-printed microfluidic devices. Adipose-derived cell treatment by our novel PGS showed first promising results, including significantly increased cellular adenosine triphosphate (ATP) release and proliferation. Enhanced cell functionality could be observed through a significantly increased adipogenic differentiation potential and a trend towards osteogenic and chondrogenic lineages. This novel approach offers unique characteristics achieved by its small dimensions and light weight that come along with increased flexibility and high integrability in existing systems and could therefore overcome limitations faced by conventional biophysical methods. It enables the combination of the process of cell treatment and live monitoring of cells and could therefore emerge in the field of bioprinting, in lab-on-a-chip applications as well as future clinical applications in cell-based therapies for many different therapeutic fields.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"22 ","pages":"Article 100216"},"PeriodicalIF":2.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermohydraulic performance enhancement for flow through circular geometries using curved pins","authors":"Rohit Dilip Gurav , Prashant Wasudeo Deshmukh , Parag Chaware","doi":"10.1016/j.apples.2025.100215","DOIUrl":"10.1016/j.apples.2025.100215","url":null,"abstract":"<div><div>Passive techniques for enhancing the thermal performance of existing systems show promise for various thermal applications. This study examines the use of curved pins with a rectangular cross-section mounted on the inner surface of a circular tube. These curved pins enhance the fluid's residence time by creating circulation, improving local and average heat transfer coefficients. The research investigates the average heat transfer and pressure drop in circular tubes equipped with curved pins under fully developed turbulent flow conditions. The Reynolds numbers at the inlet range from 10,000 to 50,000. The results reveal that the convective heat transfer coefficient on the inner tube surface can be up to 200% higher than that of a smooth tube. Additionally, the cost-effectiveness of this heat transfer enhancement method is assessed by considering the associated pressure drop using the thermohydraulic performance parameter (<em>R3</em>), which ranges from 0.75 to 1.40.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"22 ","pages":"Article 100215"},"PeriodicalIF":2.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honglu He , Chen-Lung Lu , Jinhan Ren , Joni Dhar , Glenn Saunders , John Wason , Johnson Samuel , Agung Julius , John T. Wen
{"title":"Open-source software architecture for multi-robot Wire Arc Additive Manufacturing (WAAM)","authors":"Honglu He , Chen-Lung Lu , Jinhan Ren , Joni Dhar , Glenn Saunders , John Wason , Johnson Samuel , Agung Julius , John T. Wen","doi":"10.1016/j.apples.2025.100204","DOIUrl":"10.1016/j.apples.2025.100204","url":null,"abstract":"<div><div>Wire Arc Additive Manufacturing (WAAM) is a metal 3D printing technology that deposits molten metal wire on a substrate to form desired geometries. Articulated robot arms are commonly used in WAAM to produce complex geometric shapes. However, they mostly rely on proprietary robot and weld control software that limits process tuning and customization, incorporation of third-party sensors, implementation on robots and weld controllers from multiple vendors, and customizable user programming. This paper presents a general open-source software architecture for WAAM that addresses these limitations. The foundation of this architecture is Robot Raconteur, an open-source control and communication framework that serves as the middleware for integrating robots and sensors from different vendors. Based on this architecture, we developed an end-to-end robotic WAAM implementation that takes a CAD file to a printed WAAM part and evaluates the accuracy of the result. The major components in the architecture include part slicing, robot motion planning, part metrology, in-process sensing, and process tuning. The current implementation is based on Motoman robots and Fronius weld controller, but the approach is adaptable to other industrial robots and weld controllers. The capability of the WAAM system is demonstrated through the printing of parts with various geometries and acquisition of in-process sensor data for real-time motion adjustment.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"22 ","pages":"Article 100204"},"PeriodicalIF":2.2,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental determination of the recovery factor on cylindrically flow-around temperature sensors Part 2: Determination of the local, tangential surface temperature distribution","authors":"Andreas Huster , Simon Paymal","doi":"10.1016/j.apples.2025.100210","DOIUrl":"10.1016/j.apples.2025.100210","url":null,"abstract":"<div><div>It is known in the literature that in the case of compressible fluids, higher values than the fluid temperature are displayed on temperature sensors, among other things due to the accumulation point flow, which is taken into account with the help of the recovery factor. In Part I of this series, the test rig and integral results for the determination of the recovery factor on cross-flowed temperature sensors between 1.5 mm and 8 mm diameter were presented. The Mach number as well as the Reynolds and Prandtl numbers have an influence on the recovery factor. These integral results will be verified by measuring the tangential temperature distribution. For this purpose, a special sensor carrier was developed and moved quickly through the ambient air at different angular positions so that the tangential temperature distribution could be determined. In accordance with the theory, the highest temperature is at the accumulation point with the total temperature and the local recovery factor is 1. The temperature drops continuously to an angle of about 80°. In the wake of the cylinder there is a roughly constant temperature level. If an average value is formed from the measured values of the local recovery factors, a good agreement with the integral results from Part I is obtained.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"22 ","pages":"Article 100210"},"PeriodicalIF":2.2,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniele Cioni , Lucas Lapostolle , Miguel Costas , Steven Boles , David Morin
{"title":"Influence of the state-of-charge on the mechanical behaviour of lithium-ion pouch cells under uniaxial compression","authors":"Daniele Cioni , Lucas Lapostolle , Miguel Costas , Steven Boles , David Morin","doi":"10.1016/j.apples.2025.100211","DOIUrl":"10.1016/j.apples.2025.100211","url":null,"abstract":"<div><div>With extensive recent deployment of lithium batteries in stationary and mobility applications, integration engineers face a challenging burden for design and planning the static and dynamic external environment surrounding cells. Essential to these designs are understanding how cells respond to mechanical compression and the thresholds for initiating catastrophic failure. This study investigates how the state of charge (SOC) affects the compressive mechanical behaviour and the occurrence of internal short circuits (ISC) in lithium-ion pouch cells. NMC811 lithium-ion pouch cells were subjected to uniaxial compression tests at different SOCs, namely deep discharge, 0 %, 50 %, and 100 %. The results showed that the SOC has a minor effect on macroscopic compression behaviour and the occurrence of ISC. Engineering stress at ISC increased linearly with the SOC due to slight stiffening at higher SOC levels, while engineering strain at ISC remained constant. These findings suggest that deep-discharged cells can be used for safer mechanical testing, as their mechanical response is effectively equivalent to that of charged cells, but poses a lower safety risk. Furthermore, the results of this study align with prior research regarding the influence of SOC on the mechanical response of pouch cells. Such response is deemed to be influenced by compressive internal stresses, generated by the constrained SOC-related swelling of the jellyroll.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"21 ","pages":"Article 100211"},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Taylor Hurst , Mathew Kuttolamadom , Chao Ma , Jyhwen Wang
{"title":"An experimental investigation of selective laser melting for coating of WCCo powder on steel substrates","authors":"Michael Taylor Hurst , Mathew Kuttolamadom , Chao Ma , Jyhwen Wang","doi":"10.1016/j.apples.2025.100207","DOIUrl":"10.1016/j.apples.2025.100207","url":null,"abstract":"<div><div>The performance of metal forming dies heavily depends on their surface characteristics including surface roughness and hardness. In forming complex part geometry, advanced die technologies are often used to control material flow such that wrinkling or fracture of workpiece can be prevented. This research investigate the use of selective laser melting (SLM) process to selectively coat WC<img>Co on steel substrates to potentially improve metal forming die performance. Experiments were conducted to study the effects of volumetric energy density (VED) on the integrity and properties of the resulting surface. Instruments including microscopy, interferometry, spectroscopy, and hardness measurements were used to characterize the coated surfaces. The results show that coating defect such as cracks and spatters can be reduced with increased VED. The coating hardness, in general, decreases with increased VED. As stainless steel and H13 tool steel were used as the substrate, the study also identified that the thermal conductivity of the substrate material play a significant role in crack formation. It is also found that surface preparation, through machining, can affect the retention of the powder and lead to a higher surface hardness. Overall the hardness increase ranged from 200 % to 300 %. The conclusions of the present work can be used as a guide for developing high performance coating on sheet metal forming dies.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"21 ","pages":"Article 100207"},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Shalomeev , S. Sheyko , O. Hrechanyі , T. Vasilchenko , A. Hrechana
{"title":"Research of the boundaries of the \"metal filter\" section during filtration of magnesium alloy AZ91","authors":"V. Shalomeev , S. Sheyko , O. Hrechanyі , T. Vasilchenko , A. Hrechana","doi":"10.1016/j.apples.2025.100212","DOIUrl":"10.1016/j.apples.2025.100212","url":null,"abstract":"<div><div>During the production of magnesium alloys, non-metallic inclusions of exogenous and endogenous nature accumulate in the liquid metal, which is associated with the high chemical activity of magnesium and alloying elements, as well as the use of fluxes. Therefore, the technology for producing magnesium-based alloys involves refining processes. The most progressive method of purifying liquid metal is considered to be the method of filtering it through granular solid filters, which allows for the simultaneous refining and modification of the alloy. The structure and quality of the AZ91 alloy in the zone of contact with filter materials, magnesite, graphite, limestone, was studied. It has been established that graphite and magnesite are the most suitable filtration materials for magnesium alloys. Filtering the AZ91 alloy through graphite and magnesite filters improves the quality of the metal, but the best characteristics are obtained on a sample of the alloy filtered through a complex filter.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"21 ","pages":"Article 100212"},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihao Dong , Yinan Yu , Ping Hong , Xuechen Gu , Jiaqi Qu , Shaoming He , Muhayy Ud Din , Irfan Hussain
{"title":"Design and fabrication of foam-filled topology optimized composite structures using an improved non-monotonic interpolation function","authors":"Yihao Dong , Yinan Yu , Ping Hong , Xuechen Gu , Jiaqi Qu , Shaoming He , Muhayy Ud Din , Irfan Hussain","doi":"10.1016/j.apples.2025.100205","DOIUrl":"10.1016/j.apples.2025.100205","url":null,"abstract":"<div><div>Spatial topology and foam-filled structures are prominent macroscale characteristics observed in avian feathers and bones. However, the extraction of uniform thickness shell in a topology optimization process as well as fabricated by carbon fiber reinforced plastic is still challenge. This paper proposed a integration framework on the design and manufacturing of the topology optimized structure with rigid shell and foam filled. A modified non-monotonic function is carried out to interpolate the border coat and the infill foam, directly extract an unique coat from the single material topology optimization process. The sensitivities analyze the non-monotonic interpolation, objective and constraint considered in the optimization procedure. With this interpolation and control subsequent, we come up with a dual-molding method to fabricate the optimized structure with topology layout, rigid shell and foam infill. We compare the stiffness performance of the composite with the single material topology optimization result to discover the improvement of proposed method. The result apply to the laser altimeter sensor bracket of unmanned helicopter with high load bearing stiffness and limited design area. These bio-inspired composite with foam infill and rigid shell will improve synthetic layout that maximized the structural performance for potential use in the future transportation system.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"21 ","pages":"Article 100205"},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Kubicki, Krzysztof Kopczyński, Jarosław Młyńczak
{"title":"Retraction notice to “Climatic consequences of the process of saturation of radiation absorption in gases” [Applications in Engineering Science 17 (2024) 100170]","authors":"Jan Kubicki, Krzysztof Kopczyński, Jarosław Młyńczak","doi":"10.1016/j.apples.2024.100201","DOIUrl":"10.1016/j.apples.2024.100201","url":null,"abstract":"","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"21 ","pages":"Article 100201"},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oleg Gaidai , Jinlu Sheng , Alia Ashraf , Yan Zhu , Zirui Liu , Hongchen Li , Yu Cao
{"title":"Experimental-based Gaidai multidimensional reliability assessment approach for wind energy harvesters","authors":"Oleg Gaidai , Jinlu Sheng , Alia Ashraf , Yan Zhu , Zirui Liu , Hongchen Li , Yu Cao","doi":"10.1016/j.apples.2025.100209","DOIUrl":"10.1016/j.apples.2025.100209","url":null,"abstract":"<div><div>Dynamic Energy Harvesters (EH) playing nowadays significant role within green/renewable energy engineering, thus, in addition to numerical modelling, thorough lab/experimental research, as well as multimodal structural design and reliability approaches being required for operational longevity and safety. Performance of a particular EH device had been examined in this investigation, utilizing extensive lab wind tunnel tests, provided realistic range of windspeeds. Presented study offers state-of-the-art multidimensional structural risk assessment methodology, particularly suitable for multimodal nonlinear dynamic EH systems. Multidimensional dynamic system reliability can be analyzed via direct Monte Carlo Simulations (MCS) or via physical measurements, conducted across a representative period, resulting in jointly quasi-ergodic timeseries, representing EH multidimensional system's dynamics. Presented study demonstrated that the proposed multimodal risk assessment methodology was able to accurately forecast EH system's damage and failure risks, based on lab measured dynamics.</div><div>High dimensionality along with complex inters-correlations between structural EH system's components may present challenge for existing reliability assessment methodologies, as those are mostly limited to univariate or at most bivariate reliability analyses. Presented study's main objective was to establish a novel multidimensional structural reliability assessment methodology, enabling relevant excessive dynamics information to be extracted from experimentally recorded/measured time-histories. Advocated multimodal, multidimensional reliability methodology enables efficient, yet accurate prognostics of structural damage (failure) risks for a variety of nonlinear dynamic systems.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"21 ","pages":"Article 100209"},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143547136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}