Applications in engineering science最新文献

筛选
英文 中文
A filter calibration method for laser-scanned weld toe geometries 激光扫描焊趾几何形状的滤波器校准方法
IF 2.2
Applications in engineering science Pub Date : 2024-11-06 DOI: 10.1016/j.apples.2024.100200
Finn Renken , Matthias Jung , Sören Ehlers , Moritz Braun
{"title":"A filter calibration method for laser-scanned weld toe geometries","authors":"Finn Renken ,&nbsp;Matthias Jung ,&nbsp;Sören Ehlers ,&nbsp;Moritz Braun","doi":"10.1016/j.apples.2024.100200","DOIUrl":"10.1016/j.apples.2024.100200","url":null,"abstract":"<div><div>The scanning of weld seams can be used to evaluate the local weld toe geometry for fatigue assessments. Laser scanned weld seam profiles often contain noise which complicates the accurate measurement of the weld toe geometry. For that reason, filtering of the scanned data is necessary. The issue at hand is that a filtering method can significantly affect the measurement results. Therefore, a calibration of the filter input parameters is needed. In this study, a calibration method for filtered laser-scanned weld profiles is presented by using artificial weld toe geometries. The adjustment of different filter functions is achieved by using an optimization method on predefined weld toes with an artificial noise. The resulting input data for the filter functions is tested on a real specimen to verify the method. Through the calibration method it is possible to achieve satisfactory measurement results with precisely set input parameters for the filter functions. The most suitable filter functions for the measurement of the weld toe are the Gaussian and the Lowpass filter. Both functions are adequate as a universally applicable filter. For the evaluation of the measurement results of the radii and angles, a tolerance range is introduced, which is defined by the theoretically minimum measurable radii and angles. Using an adjusted Lowpass filter and a point distance of 0.07 mm set by the laser scanner, a measurement within the tolerance range of 0.2 mm is achievable for the weld toe radius. For the weld toe angle, the tolerance range of 1.5° is achieved for the majority of measurements.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100200"},"PeriodicalIF":2.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of open channel basaltic lava flow through topographical bends 明渠玄武岩熔岩流穿越地形弯道的数值模拟
IF 2.2
Applications in engineering science Pub Date : 2024-10-09 DOI: 10.1016/j.apples.2024.100196
Dale R. Cusack , David K. Muchiri , James N. Hewett , Mathieu Sellier , Ben Kennedy , Miguel Moyers-Gonzalez
{"title":"Numerical simulation of open channel basaltic lava flow through topographical bends","authors":"Dale R. Cusack ,&nbsp;David K. Muchiri ,&nbsp;James N. Hewett ,&nbsp;Mathieu Sellier ,&nbsp;Ben Kennedy ,&nbsp;Miguel Moyers-Gonzalez","doi":"10.1016/j.apples.2024.100196","DOIUrl":"10.1016/j.apples.2024.100196","url":null,"abstract":"<div><div>In this study, we utilised computational fluid dynamics to investigate the behaviour of open-channel basaltic lava flows navigating bends on shield volcanoes. Our focus was on understanding the relationship between flow velocity, rheology, and bend geometry. Employing a simple Force Balance Model (FBM), which considers the equilibrium between hydrostatic pressure and centrifugal force, we accurately approximated the changes in the height of the lava’s free surface through various bend geometries. Our analysis includes examining the influence of channel depth, width, and bend radius on the flow, revealing that variations in these parameters significantly affect the flow’s vertical displacement. Additionally, the bend sector angle emerged as a critical factor, indicating a minimum angle necessary for the flow to fully develop before exiting the bend.</div><div>Further, we assessed the applicability of the Shallow Water Equations (SWE) for modelling the inertial displacement of the lava flow in bends, finding a good fit. The study extended to comparing the FBM’s predictions of the tilt angle of the flow’s free surface with the SWE results, showing notable agreement under specific conditions, particularly at a bend angle of 90 degrees. The impact of fluid density was also considered, revealing that density is a contributing factor to the development of the wetted line in the bend, a factor that is not captured by the simple FBM model. Finally, we explored different rheologies akin to natural lava flows, such as viscoplastic flow, and determined that factors like yield stress, consistency index, and power law index have a small impact on the flow behaviour in a steady-state condition within a bend.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100196"},"PeriodicalIF":2.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental study on heat transfer using electrohydrodynamics (EHD) over a heated vertical plate. 利用电流体力学(EHD)在加热的垂直板上进行热传递的实验研究。
IF 2.2
Applications in engineering science Pub Date : 2024-10-03 DOI: 10.1016/j.apples.2024.100198
Weerachai Chaiworapuek , Phantisa Limleamthong , Teerapat Thungthong , Jetsadaporn Priyadumkol
{"title":"An experimental study on heat transfer using electrohydrodynamics (EHD) over a heated vertical plate.","authors":"Weerachai Chaiworapuek ,&nbsp;Phantisa Limleamthong ,&nbsp;Teerapat Thungthong ,&nbsp;Jetsadaporn Priyadumkol","doi":"10.1016/j.apples.2024.100198","DOIUrl":"10.1016/j.apples.2024.100198","url":null,"abstract":"<div><div>The Corona effect offers significant potential for improving heat transfer efficiency in air. This study thoroughly examined how a single corona discharge affects heat transfer on a heated vertical flat plate. Key parameters tested included corona voltage, the aspect ratio of the vertical plate (<em>y/L</em>), and the inter-electrode discharge gap ratio (<em>x/d</em>). The findings revealed that increasing the corona voltage and decreasing the discharge gap enhanced heat transfer efficiency along the vertical surface. A predictive formula for the local Nusselt number was developed to characterize heat transfer on the plate. Additionally, Particle Image Velocimetry (PIV) was used to analyze the corona wind generated by the discharge. The study observed that the corona wind formed a vortex in the upstream region, which resulted in lower heat transfer rates upstream compared to the downstream region.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100198"},"PeriodicalIF":2.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice Boltzmann simulations of unsteady Bingham fluid flows 非稳态宾汉流体流动的晶格玻尔兹曼模拟
IF 2.2
Applications in engineering science Pub Date : 2024-10-01 DOI: 10.1016/j.apples.2024.100199
Alan Lugarini, Marco A. Ferrari, Admilson T. Franco
{"title":"Lattice Boltzmann simulations of unsteady Bingham fluid flows","authors":"Alan Lugarini,&nbsp;Marco A. Ferrari,&nbsp;Admilson T. Franco","doi":"10.1016/j.apples.2024.100199","DOIUrl":"10.1016/j.apples.2024.100199","url":null,"abstract":"<div><div>Transient flows of viscoplastic fluids have very peculiar characteristics. The startup and cessation flows of viscoplastic materials have been subject to many theoretical and numerical investigations. The most challenging aspect of numerical solutions of viscoplastic fluids is the viscosity singularity during the transition from yielded to unyielded material. Hence, the proper representation of yield surfaces is the most critical aspect of numerical methods in viscoplastic fluid flow. In the present work, we use a lattice Boltzmann scheme to solve an ideal Bingham fluid’s startup and cessation flows. This numerical scheme advantage is that can represent infinite viscosity without noticeable numerical instabilities, producing yield surfaces with more accuracy and quality. Theoretical solutions for the startup flow are available in the literature. However, it is unclear which is more accurate and what their validity ranges are. Nonetheless, these solutions served as a reference for the present simulations. The overall aspect of the numerical solutions agreed with the theoretical models. The cessation flow of the Bingham fluid was also simulated. Unlike a Newtonian fluid, this type of flow is known to have a finite period until cessation. The simulations correctly reproduced this behavior. The transient yield surfaces matched very well with augmented Lagrangian solutions.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100199"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger 管式热交换器中轴向穿孔多矩形导流板式挡板的热流体性能
IF 2.2
Applications in engineering science Pub Date : 2024-09-27 DOI: 10.1016/j.apples.2024.100197
Md Atiqur Rahman
{"title":"Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger","authors":"Md Atiqur Rahman","doi":"10.1016/j.apples.2024.100197","DOIUrl":"10.1016/j.apples.2024.100197","url":null,"abstract":"<div><div>The study investigated an unconventional heat exchanger design that utilizes swirling airflow to enhance heat transfer over heated tubes. This innovative system incorporates a perforated round baffle plate, accompanied by multiple rectangular air deflectors oriented in opposite directions at varying inclination angles. These deflectors are symmetrically arranged at different pitch ratios alongside consistently spaced tubes forming a circular configuration, all subject to a uniform heat flux. Enclosed within a circular duct with longitudinal airflow, the combined baffle plate and tube assembly bring forth efficient heat transfer. The air-side turbulence intensified by the deflectors induces a chaotic motion, contributing to enhanced surface heat transfer. Each baffle plate has twelve opposite-oriented deflectors, resulting in opposing swirl flows that further promote flow recirculation and augment surface heat transfer. The performance of this heat exchanger was evaluated by considering different pitch ratios and inclination angles across a Reynolds number range of 16000-30000. The findings demonstrate that the heat exchanger with rectangular flow deflectors on the baffle plate exhibits significant improvements in thermo-fluid performance. Notably, an average enhancement of 1.88 was observed at an inclination angle of 50 degrees and a pitch ratio of 1.2 when compared to an exchanger without baffle plates, emphasizing the considerable impact of these design aspects.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100197"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equations of state and hysteresis loops in isothermal cavitation 等温空化中的状态方程和滞后环
IF 2.2
Applications in engineering science Pub Date : 2024-09-01 DOI: 10.1016/j.apples.2024.100195
Alexandre Hastenreiter Assumpção , Felipe Bastos de Freitas Rachid , Maria Laura Martins-Costa , Rogério Martins Saldanha da Gama
{"title":"Equations of state and hysteresis loops in isothermal cavitation","authors":"Alexandre Hastenreiter Assumpção ,&nbsp;Felipe Bastos de Freitas Rachid ,&nbsp;Maria Laura Martins-Costa ,&nbsp;Rogério Martins Saldanha da Gama","doi":"10.1016/j.apples.2024.100195","DOIUrl":"10.1016/j.apples.2024.100195","url":null,"abstract":"<div><p>This paper investigates the influence of the use of the cubic equation of state (EOS) in the isothermal cavitation of compressible fluids. To do so, a thermodynamic consistent cavitation model that was recently proposed has been used. This model is derived under the Thermodynamics of Irreversible Processes and considers the irreversible dissipative character of the phase change transformation. Numerical simulations carried out using linear and cubic EOS are presented and compared. Neglecting surface tension effects, the results obtained demonstrate that there is no significant difference between the responses of these two types of EOS for water up to saturation pressures up to about 200 kPa. Hysteresis loops observed in the simulations with both types of EOS are virtually the same. It suggests that linear EOSs can provide good approximations for metastable behaviors (intrinsically present in cubic EOS) as well as for the Gibbs free energy difference (the thermodynamic force associated with irreversible phase change transformation), rendering a great simplification in the analysis.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100195"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000219/pdfft?md5=e5daf3c8c37531805cf3d906562cdb3b&pid=1-s2.0-S2666496824000219-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress H(div)-conforming and discontinuous Galerkin approach for Herschel-Bulkley flow with density-dependent viscosity and yield stress(具有密度粘度和屈服应力的 Herschel-Bulkley 流动的 H(div)-conforming 和不连续伽勒金方法
IF 2.2
Applications in engineering science Pub Date : 2024-09-01 DOI: 10.1016/j.apples.2024.100193
Sergio González-Andrade , Paul E. Méndez Silva
{"title":"H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress","authors":"Sergio González-Andrade ,&nbsp;Paul E. Méndez Silva","doi":"10.1016/j.apples.2024.100193","DOIUrl":"10.1016/j.apples.2024.100193","url":null,"abstract":"<div><p>This paper presents a comprehensive study on Herschel–Bulkley flow, where the flow parameters are dependent on the density. The Herschel–Bulkley model is a generalized power-law model used to simulate viscoplastic fluids defined by a plasticity threshold. We consider the case where the plasticity threshold and the viscosity depend on the shear rate and fluid density. To analyze this model, we use a Huber regularization of the stress and propose an H(div)-conforming and discontinuous Galerkin (DG) numerical approximation for the coupled equations governing the flow. We discuss the stability and existence of discrete solutions and propose a semismooth Newton linearization for the numerical solution of the discretized system. Our numerical scheme is validated through several experiments that explore the behavior of Herschel–Bulkley flow under different conditions. The results demonstrate the robustness of our numerical method.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100193"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000190/pdfft?md5=9c9483593e5fb0dcb26150f6a60f8392&pid=1-s2.0-S2666496824000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of fully developed pipe flow of a shear-thinning fluid that approximates the response of viscoplastic fluids 近似于粘塑性流体响应的剪切稀化流体完全发展管道流动的稳定性
IF 2.2
Applications in engineering science Pub Date : 2024-09-01 DOI: 10.1016/j.apples.2024.100191
Mohan Anand , Paluri Kiranmai , Sai Manikiran Garimella
{"title":"Stability of fully developed pipe flow of a shear-thinning fluid that approximates the response of viscoplastic fluids","authors":"Mohan Anand ,&nbsp;Paluri Kiranmai ,&nbsp;Sai Manikiran Garimella","doi":"10.1016/j.apples.2024.100191","DOIUrl":"10.1016/j.apples.2024.100191","url":null,"abstract":"<div><p>The stability of steady, fully developed flow in a long cylindrical pipe for a shear-thinning fluid (which approximates a class of viscoplastic materials) is studied using linear stability analysis. The eigenvalues of the frequency of the perturbation of the steady-state solution are obtained using the shooting method. The eigenvalues are negative in the Reynolds number range studied and asymptotically tend to zero as the Reynolds number increases. This shows the pipe flow is stable in the Reynolds number range studied. A qualitatively similar trend is shown by the eigenvalues of a Navier–Stokes fluid of equivalent viscosity. However, the eigenvalues are much lesser than those of the shear-thinning fluid, and this shows that the flow of the Navier–Stokes fluid can be expected to be stable over a much larger Reynolds number range than the shear-thinning fluid.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100191"},"PeriodicalIF":2.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000177/pdfft?md5=923dbb250daeae3b26cf2fac6af47f9e&pid=1-s2.0-S2666496824000177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Horizontal buoyant jets into viscoplastic ambient fluids 水平浮力射流进入粘性环境流体
IF 2.2
Applications in engineering science Pub Date : 2024-08-30 DOI: 10.1016/j.apples.2024.100192
M.H. Moosavi, H. Hassanzadeh, S.M. Taghavi
{"title":"Horizontal buoyant jets into viscoplastic ambient fluids","authors":"M.H. Moosavi,&nbsp;H. Hassanzadeh,&nbsp;S.M. Taghavi","doi":"10.1016/j.apples.2024.100192","DOIUrl":"10.1016/j.apples.2024.100192","url":null,"abstract":"<div><p>This study investigates the horizontal injection of a heavy Newtonian fluid into a lighter viscoplastic ambient fluid, in a large reservoir. The flow dynamics is experimentally captured via camera imaging, laser-induced fluorescence, and particle image velocimetry techniques. The flow parameters include various density differences, injection velocities, and ambient fluid viscoplastic properties. Our analysis identifies two key dimensionless numbers, the Froude number (<span><math><mrow><mi>F</mi><mi>r</mi></mrow></math></span>) and the effective viscosity ratio (<span><math><mi>m</mi></math></span>), which includes the rheology of the viscoplastic fluid. Our study also examines the effects of these dimensionless numbers on critical jet characteristics, such as bifurcation length, transition length, deviation length, and jet trajectory, and provides correlations using <span><math><mrow><mi>F</mi><mi>r</mi></mrow></math></span> and <span><math><mi>m</mi></math></span>, to predict these characteristic lengths. A regime classification based on the bifurcation phenomenon is also presented in the <span><math><mrow><mi>F</mi><mi>r</mi><mo>−</mo><mi>m</mi></mrow></math></span> plane.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100192"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000189/pdfft?md5=f3e2a053c708ede1fce953faf73d42c7&pid=1-s2.0-S2666496824000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological modelling of train-track-ground: A review covering core concepts, materials and applications 火车轨道地面流变模型:核心概念、材料和应用综述
IF 2.2
Applications in engineering science Pub Date : 2024-08-22 DOI: 10.1016/j.apples.2024.100194
Hafsa Farooq, Sanjay Nimbalkar
{"title":"Rheological modelling of train-track-ground: A review covering core concepts, materials and applications","authors":"Hafsa Farooq,&nbsp;Sanjay Nimbalkar","doi":"10.1016/j.apples.2024.100194","DOIUrl":"10.1016/j.apples.2024.100194","url":null,"abstract":"<div><p>Rheological models capture the behaviour of soil structures and effectively evaluate the response of various transport corridors. These models represent the elastic and plastic behaviour of a structure. This paper reviews several rheological models that incorporate elasticity, viscosity, and plasticity principles. The review encompasses various rheological models developed as viscoelastic, elastoplastic, viscoplastic, elastoviscoplastic and viscoelastoplastic models, specifically for a better understanding of high-speed rail dynamics. Analytical solutions for these models are elaborated, focusing on the behaviour of soil structures and the interaction of layers, particularly in scenarios involving two or more layers. Additionally, detailed discussions cover the results and interpretations of various studies on these rheological models.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"20 ","pages":"Article 100194"},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000207/pdfft?md5=293bc529f86ba8330f8ebe0b30f383b2&pid=1-s2.0-S2666496824000207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信