Joao S. Soares , Sarah K. Saunders , Federica Potere , Stefano Toldo , Antonio Abbate
{"title":"Engineered tissue vascular grafts: Are we there yet?","authors":"Joao S. Soares , Sarah K. Saunders , Federica Potere , Stefano Toldo , Antonio Abbate","doi":"10.1016/j.apples.2022.100114","DOIUrl":"10.1016/j.apples.2022.100114","url":null,"abstract":"<div><p>Over the last 20 years, a diverse number of different approaches have been explored in trying to produce engineered tissue vascular grafts (ETVGs). If successful, this alternative source of living vascular conduits with the ability to grow, remodel, and self-repair could revolutionize vascular surgery by relieving the limiting need for autologous grafts or providing substantial benefit and improved performance over their synthetic counterparts. However, despite tissue engineering being one of the hottest topics in biotechnology in the last three decades, it is generally acknowledged that the field's performance and its potential clinical translation have been somewhat disappointing. Pilot studies with ETVGs in animal models and preclinical human trials have been encouraging, but our understanding of the design requirements for ETVGs, how to effectively create them, and how to direct ETVG integration once implanted must be improved. This article reviews the current state-of-the-art of ETVGs with emphasis on the different manufacturing approaches explored in the past and challenges encountered and tackled, with particular focus on ETVGs that are very close to making a clinical impact and may potentially begin a new era of therapy for vascular disease.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"12 ","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000309/pdfft?md5=c559d217dc280f1053e20c9e71baf46d&pid=1-s2.0-S2666496822000309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49206860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A model for multiphase moisture and heat transport below and above the saturation point of deformable and swelling wood fibers – I: Mass transport","authors":"Winston Mmari, Björn Johannesson","doi":"10.1016/j.apples.2022.100117","DOIUrl":"10.1016/j.apples.2022.100117","url":null,"abstract":"<div><p>A thermodynamically consistent model for heat and mass transfer in deformable wood fibers is developed. The hybrid mixture theory is used to model the material as a mixture of three phases, consisting of a solid, a liquid and a gas phase. The solid phase consists of dry fibers and bound water constituents, whereas the gas phase has dry air and water vapor constituents. Emphasis is put on the mass flow and mass exchange of moisture in the material both below and above the saturation point of the solid wood fibers. Generalized forms of Fick’s, Darcy’s and Fourier’s laws are derived, and the chemical potential is used as a driving force for mass flow. Mass exchange due to sorption and evaporation/condensation processes is implemented in the model, where hysteretic properties both within and above the hygroscopic moisture range are described using Frandsen’s hysteresis model. Moisture induced swelling/shrinkage is included where the porosity of the material can vary. A large strain setting formulated for general orthotropy is adopted for the mechanical deformations. To show the performance of the resulting model, it is implemented in a finite element method framework and used to simulate the processes of heat and moisture transport dynamics of a wood sample subjected to drying from an over-hygroscopic moisture state.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"12 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000334/pdfft?md5=51c017c07f9244c3d773e3ab1cf0bdfa&pid=1-s2.0-S2666496822000334-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43176034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A nonlinear constitutive model for some hard electro-elastic solids. Solutions of some boundary value problems","authors":"N. Yévenes, R. Bustamante","doi":"10.1016/j.apples.2022.100109","DOIUrl":"https://doi.org/10.1016/j.apples.2022.100109","url":null,"abstract":"<div><p>A constitutive equation for a class of electro-elastic solid is proposed, neglecting dissipation of energy, and assuming that the gradient of the displacement field is small (the above implies the strains are small). Using the theory of implicit constitutive relations developed by Rajagopal and co-workers, a constitutive equation is proposed where the linearized strain is a function of the Cauchy stress and the electric field. The polarization field is assumed to be a function of the Cauchy stress and the electric field as well. The material parameters are adjusted to model the behaviour of some ceramic-like materials. Several boundary problems are solved to study the predictions of these new constitutive equations.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"11 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000255/pdfft?md5=904dbfc6d5d3a81c2b3b573fb85554dc&pid=1-s2.0-S2666496822000255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137008511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sirisha Emani , Xiaoli Liu , Michelle Mulonea , Louise E. Wilkins-Haug , Mark A Perrella , Sitaram M. Emani
{"title":"Placenta as a source for progenitor cells for cardiac cell-based therapies","authors":"Sirisha Emani , Xiaoli Liu , Michelle Mulonea , Louise E. Wilkins-Haug , Mark A Perrella , Sitaram M. Emani","doi":"10.1016/j.apples.2022.100110","DOIUrl":"10.1016/j.apples.2022.100110","url":null,"abstract":"<div><p>Objective: Cell-based therapies utilizing mesenchymal and cardiac progenitor cells have demonstrated promising results in the treatment of congenital heart disease. We hypothesize that autologous human placental-derived progenitor cells share similar characteristics to cardiac progenitor cells (CPC) derived from autologous bone marrow or cardiac sources.</p><p>Methods: Fetal portion of the placenta was harvested at the time of delivery from newborns (<em>N</em> = 5), and cells were isolated and expanded from the amnion and chorion layers. Flow cytometry and multi-lineage differentiation potential assays were used to characterize placental-derived progenitor cells. Placenta derived sphere cells were generated and phenotypic and functional characteristics were analyzed.</p><p>Results: CD90, CD105, and Vimentin were expressed in <10% placental-derived progenitor cells, and differentiation into mesodermal lineages was not observed. However, placental-derived progenitor cells were able to differentiate into smooth muscle and cardiomyocyte lineages. In placenta derived sphere cells, >65% expressed cardiac lineage marker (SIRPA), but <15% expressed Discoidin domain receptor 2 (DDR2). Compared to placental-derived progenitor cells, placenta derived sphere cells expressed higher levels of cardiac transcription factors, cardiac ion channel genes and cardiac structural genes.</p><p>Conclusions: Placental progenitor cells demonstrate similar characteristics to CPC currently utilized in several clinical trials that can serve as a readily available autologous source for cardiac cell therapy.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"11 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000267/pdfft?md5=2e0c6346332467c67bd2143036105144&pid=1-s2.0-S2666496822000267-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45626676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on energy evolution and crack propagation of rock mass under single hole uncoupled charge blasting","authors":"Tianhui Ma , Fujie Li , Yuhao Yang , Limin Li","doi":"10.1016/j.apples.2022.100112","DOIUrl":"10.1016/j.apples.2022.100112","url":null,"abstract":"<div><p>In drilling and blasting operation, uncoupled charge structure is widely used in pre-split blasting, smooth blasting, pressure relief blasting and other controlled blasting engineering. In order to study the evolution of energy and crack propagation in rock mass during blasting under the uncoupled charge structure, this paper established a three-dimensional numerical test model of single-hole uncoupled charge by numerical simulation method. By changing the uncoupling coefficient, the pressure of hole wall, energy evolution and crack propagation during blasting were compared and analyzed. The results show that under the condition of the same explosive quantity, the strain energy of rock mass, the strain rate and peak pressure of hole wall rock and the area of blasting crack are negatively correlated with the uncoupling coefficient of charge, and the formula of the change with the uncoupling coefficient is obtained. When the uncoupling coefficient is less than 3 and the charge uncoupling coefficient is changed, the peak pressure of hole wall, strain energy of rock mass and blast-induced crack area decrease significantly with the increase of the uncoupling coefficient. When the uncoupling coefficient is greater than 3, the change range of the uncoupling coefficient becomes smaller. The experimental conclusions are analyzed to provide reference for field blasting construction.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"11 ","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000280/pdfft?md5=fe0f992358e188c61521eba648cc8bbf&pid=1-s2.0-S2666496822000280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43452225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viswajith S. Vasudevan , Keshava Rajagopal , James F. Antaki
{"title":"Application of mathematical modeling to quantify ventricular contribution following durable left ventricular assist device support","authors":"Viswajith S. Vasudevan , Keshava Rajagopal , James F. Antaki","doi":"10.1016/j.apples.2022.100107","DOIUrl":"10.1016/j.apples.2022.100107","url":null,"abstract":"<div><p>Ejection Fraction (EF), a measure of the ability of the heart to pump blood, is an important parameter for the diagnosis for heart failure as well as in the monitoring of the therapy provided. The standard method of calculating EF uses the left ventricular volume (LVV) by identifying the end-diastolic and end-systolic volumes. For patients implanted with a continuous flow (CF) left ventricular assist devices (LVADs), there are two pathways for blood ejection, Trans-Aortic Valve Flow (TAVF) which is intermittent and Trans-VAD Flow (TVF) that flows continuously throughout the cardiac cycle. Using the standard method to calculate EF in LVAD patients provides the fraction of the total blood ejected from the ventricle over a cardiac cycle. When monitoring the patient for recovery, it is vital to quantify the precise contribution of the Trans-Aortic Valve path independently from the Trans-VAD contribution. In this paper we demonstrate how this can be accomplished with a mathematical lumped parameter model of the interaction of the cardiovascular system and the LVAD. We introduce the Trans-Aortic Valve Ejection Fraction (TAVEF), which is the measure of the Trans-Aortic Valve contribution to the overall circulation. The dilated failing heart is represented by an unimodal End-Sytolic Pressure Volume Relationship (ESPVR). Our results indicate that TAVEF describes the contribution of the TAVF better as compared to standard EF over the entire range of LVAD speeds, and captures the point of aortic valve closure by becoming 0, whereas the standard EF is non-zero. TAVEF can be a useful, reliable, non-invasive mechanism for monitoring ventricular recovery.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"11 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000243/pdfft?md5=2d872694b24a8dbda9ba36332b732f41&pid=1-s2.0-S2666496822000243-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48985756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harvey S. Borovetz , Salim E. Olia , James F. Antaki , the PediaFlow™ consortium
{"title":"Toward the development of the PediaFlow™ pediatric ventricular assist device: Past, present, future","authors":"Harvey S. Borovetz , Salim E. Olia , James F. Antaki , the PediaFlow™ consortium","doi":"10.1016/j.apples.2022.100113","DOIUrl":"10.1016/j.apples.2022.100113","url":null,"abstract":"<div><p>Ventricular Assist Devices (VADs) have revolutionized treatment of adult heart failure with tens of thousands of devices implanted either as a “bridge” to transplant or as a permanent “destination” therapy. There is also a need for VADs for pediatric patients with congenital and/or acquired cardiac disease; yet, the small market potential of pediatrics versus adults has limited commercial interest. Under the support of two completed contract awards from the National Heart, Lung, and Blood Institute and one current award from the Department of Defense Peer Reviewed Medical Research Program, we have designed and validated an implantable, mixed-flow, fully magnetically levitated (maglev), rotodynamic blood pump, the PediaFlow™ pediatric VAD. The clinical design goal for the PediaFlow™ pediatric VAD is to support the failed circulation of infants/neonates and consequently most vulnerable patients for durations consistent with bridge-to-transplant wait list times. Our current fifth generation prototype is the size of an AA cell battery and can achieve flow rates consistent with pediatric circulatory support requirements with minimal cellular damage. We are also currently developing a “smart” closed-loop pump controller which is a quantum improvement over current clinical-use controllers that operate in fixed-output, open-loop mode.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"11 ","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000292/pdfft?md5=eb581daacd2bc4e91c2d0cfb6be2c398&pid=1-s2.0-S2666496822000292-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48192997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constitutive modeling of the mechanical response of arterial tissues","authors":"Manoj Myneni , K.R. Rajagopal","doi":"10.1016/j.apples.2022.100111","DOIUrl":"10.1016/j.apples.2022.100111","url":null,"abstract":"<div><p>Despite the tremendous impact that a good constitutive relation for the response of arterial tissues can have with regard to advances in cardiovascular science and medicine, and notwithstanding the intense effort to put a felicitous constitutive relation into place, no reliable constitutive relation is available in the literature. In this review article, we provide a brief survey and assessment of the evolution of constitutive relations that have been developed to describe the response of arterial tissues, their inadequacies, and the various quintessential aspects of the response that need to be taken into consideration. We then fashion a nonlinear constitutive relation to describe an inhomogeneous anisotropic compressible viscoelastic solid, which while being grossly inadequate to describe the tissue in its entirety, makes it evident that what one ought to strive for is not in capturing the complexity of tissues, but rather the development of a simple global measure that can be a reliable predictor of the onset of tissue disease, and tissue damage and failure.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"11 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000279/pdfft?md5=7bdfcfd52c0b5941cb650aaf58f9b855&pid=1-s2.0-S2666496822000279-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48860214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Dario Toasa Caiza , Stéphane Sire , Thomas Ummenhofer , Yoshihiko Uematsu
{"title":"Full and partial compression fatigue tests on welded specimens of steel St 52-3. Effects of the stress ratio on the probabilistic fatigue life estimation","authors":"Paul Dario Toasa Caiza , Stéphane Sire , Thomas Ummenhofer , Yoshihiko Uematsu","doi":"10.1016/j.apples.2022.100091","DOIUrl":"10.1016/j.apples.2022.100091","url":null,"abstract":"<div><p>The fatigue strength of structures subjected to cyclic loading depends strongly on the stress ratio. Particularly, in case of welded steel structures this fact is not considered in the corresponding standards nor in the guidelines. Experimentally, two approaches are used to study the effect of stress ratio on the fatigue life. On the one hand, based on the <span><math><mi>S</mi></math></span>-<span><math><mi>N</mi></math></span> <!--> <!-->curves obtained from tests performed at different stress ratios, the fatigue life under a particular stress range is estimated. On the other hand, the stress amplitude corresponding to a constant fatigue life is estimated by applying the failure criteria for fluctuating stress like the Goodman–Haigh relationship. This paper presents a general probabilistic model, which estimates the <span><math><mi>S</mi></math></span>-<span><math><mi>N</mi></math></span> <!--> <!-->and Goodman–Haigh curves for any stress ratio. Afterwards, this model is applied on data obtained from full and partial cyclic compression loading tests performed on welded specimens made of steel St 52-3. The tested details correspond to the permissible notch condition limit occurred in highly stressed structures used to build ships.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"10 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000097/pdfft?md5=06b9e43ce94f2869a1d5c1ed975736ee&pid=1-s2.0-S2666496822000097-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47628645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of surface finish in extrusion honing process by regression analysis and artificial neural networks","authors":"Jayasimha SLN , Lingaraju K.N , Raju H.P","doi":"10.1016/j.apples.2022.100105","DOIUrl":"10.1016/j.apples.2022.100105","url":null,"abstract":"<div><p>The current work explores the influence of process parameters such as mesh size and volume fraction of abrasives with number of passes, on the interior surface quality of a pre machined component by extrusion honing process. The finishing process is highly flexible and unconventional while modifying the surfaces in case of miniature components involving complex profiles. The method is extensively used to deburr, polish, edge contour and removing recast layers by producing compressive stresses. By, the pressurized flow of semi viscous abrasive laden across the surface to be processed. The experimental study has been carried out on Inconel-625 alloy by one way EH process, with the carrier medium silicone polymer blended with SiC as abrasives. Experiments are planned by constructing L27 orthogonal array for the factors such as mesh number 36, 46, 54 and volume fraction 40, 50, 60 % of abrasives followed by number of passes 5, 10 and 15. Also, the study focuses in developing a regression model, training neural network and comparison of experimental R<sub>a</sub> with both regression and ANN model. The prediction of R<sub>a</sub> is accomplished by developing a linear regression model and a feed forward back propagation neural network model. Both the developed models are able to predict the output response with an error of 5 to 12%.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"10 ","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649682200022X/pdfft?md5=777bbc5d67d9d687c75e0dbfb1b98cd4&pid=1-s2.0-S266649682200022X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43368525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}