{"title":"Total navicular and cuboid replacement utilizing patient specific 3D printed implants for treatment of osteonecrosis of the midfoot: Case report and technique guide","authors":"John R. Constantino , Adam D. Perler","doi":"10.1016/j.stlm.2023.100140","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100140","url":null,"abstract":"<div><p>Osteonecrosis of the midfoot is a rare but debilitating pathology that can severely decrease quality of life. Surgical treatment is often complex and can lead to suboptimal outcomes. Additive manufacturing or 3D printing can provide a more patient specific approach to address these difficult entities. This case report highlights the successful use of custom 3D printed implants to replace the navicular and cuboid bones for treatment of osteonecrosis by providing a unique mixture of joint fusion and resurfacing interfaces in a 47-year-old active female. At the final follow up of 30 months, the patient continues to express satisfaction with her procedure and perform physical activities without pain.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"13 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964123000413/pdfft?md5=b2e68ee3e2c219fe056615b22d3e2df5&pid=1-s2.0-S2666964123000413-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A perspective on 3D printing in the medical field","authors":"Alberto Boretti","doi":"10.1016/j.stlm.2023.100138","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100138","url":null,"abstract":"<div><p>The work proposes a perspective on 3D printing in the medical field. The current core applications, which are primarily bioprinting, models in surgery preparation, surgical instruments, prosthetics, drugs, drug delivery systems, streamlined drug development process, and educational medical models, are first reported. The challenges and opportunities of the technology are highlighted, and the present and expected future markets of the technology are considered. The further developments from synergies with artificial intelligence (AI), 4D printing, and the Internet of Things (IoT) is finally examined to provide a comprehensive outlook of where we are, and where we are after, subjected to which constraints.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"13 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964123000395/pdfft?md5=9e6baedc76a4c3314f7c462fe5ae612e&pid=1-s2.0-S2666964123000395-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138436241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kegui Liu, Jingbo Pan, Qi Zhang, Gang Kong, Dan Liu, Xiujiang Sun, Guodong Zhang, Yue Zou
{"title":"Comparison of the application value of 3D printed osteotomy guide plate and artificial intelligence 3D surgical planning in artificial total knee arthroplasty","authors":"Kegui Liu, Jingbo Pan, Qi Zhang, Gang Kong, Dan Liu, Xiujiang Sun, Guodong Zhang, Yue Zou","doi":"10.1016/j.stlm.2023.100139","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100139","url":null,"abstract":"","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"284 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139292719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Søren Reinhold Jakobsen, Christina Carøe Pedersen, Asser H. Thomsen, Kasper Hansen
{"title":"3D-print as a template for reassembly of skull fragments in a homicide case","authors":"Søren Reinhold Jakobsen, Christina Carøe Pedersen, Asser H. Thomsen, Kasper Hansen","doi":"10.1016/j.stlm.2023.100137","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100137","url":null,"abstract":"<div><p>In this technical note we report a case where 3D-printing aided the reassembly of skull fragments in a homicide with severe tampering of the bones. A young male was shot, the body was incinerated and crushed with garden tools resulting in hundreds of brittle, calcine bone fragments from the skull. An antemortem computed tomography (CT)-scan of the skull was available from a previous assault of the victim. To aid the process of reassembly we used the antemortem CT-data to develop a 3D fixture-grid of the cranial cavity. The 3D grid was utilized as an anatomically correct template for bone reconstruction. This novel technique was based solely on open-source software including 3D Slicer and Blender and could have the potential to aid similar cases.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to Initial experience with augmented reality for treatment of an orbital floor fracture – a Technical Note Annals of 3D Printed Medicine, Volume 7, August 2022, 100072","authors":"Adeeb Zoabi , Daniel Oren , Shai Tejman-Yarden , Idan Redenski , Fares Kablan , Samer Srouji","doi":"10.1016/j.stlm.2023.100133","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100133","url":null,"abstract":"","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Pérez Fernández , Marta Ayats Soler , Marta Gómez Chiari , Irene Martínez Padilla , Albert Malet Contreras , Josep Rubio-Palau
{"title":"Erratum to “3D surgical planning of neonatal mandibular distraction osteogenesis in children with Pierre-Robin sequence” [Annals of 3D printed medicine, volume 6, June 2022, 100053]","authors":"Eduardo Pérez Fernández , Marta Ayats Soler , Marta Gómez Chiari , Irene Martínez Padilla , Albert Malet Contreras , Josep Rubio-Palau","doi":"10.1016/j.stlm.2023.100134","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100134","url":null,"abstract":"","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to PolyJet 3D printing: Predicting color by multilayer perceptron neural network Annals of 3D Printed Medicine, Volume 5, March 2022, 100049","authors":"Xingjian Wei , Na Zou , Li Zeng , Zhijian Pei","doi":"10.1016/j.stlm.2023.100136","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100136","url":null,"abstract":"","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “3D printing surgical phantoms and their role in the visualization of medical procedures” [Annals of 3D Printed Medicine, Volume 6, June 2022, 100057]","authors":"Monica Higgins , Steve Leung , Norbert Radacsi","doi":"10.1016/j.stlm.2023.100135","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100135","url":null,"abstract":"","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning-assisted extrusion-based 3D bioprinting for tissue regeneration applications","authors":"Devara Venkata Krishna, Mamilla Ravi Sankar","doi":"10.1016/j.stlm.2023.100132","DOIUrl":"https://doi.org/10.1016/j.stlm.2023.100132","url":null,"abstract":"<div><p>Extrusion-based 3D bioprinting (EBBP) prints tissues, including nerve guide conduits, bone tissue engineering, skin tissue repair, cartilage repair, and muscle repair. The EBBP demands optimized parameters for obtaining good printability and cell viability. However, finding optimal process parameters is always essential for the researcher. The biological, mechanical, and rheological parameters all together need to be evaluated to enhance the printability of tissue. A degree of simplicity may be required to interpret each parameter's effect. However, overcoming complexity with a multiparameter is quite tricky through conventional methods. It can be overcome with the implementation of machine learning. This article concisely delineates the application of machine learning algorithms for modeling printability as a function of influential parameters was elaborately discussed. Additionally, indispensable challenges and futuristic aspects were briefed concerning tissue regeneration applications.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gemma Leslie , Keith Winwood , Andy Sanderson , Peter Zioupos , Tom Allen
{"title":"Feasibility of additively manufacturing synthetic bone for sports personal protective equipment applications","authors":"Gemma Leslie , Keith Winwood , Andy Sanderson , Peter Zioupos , Tom Allen","doi":"10.1016/j.stlm.2023.100121","DOIUrl":"10.1016/j.stlm.2023.100121","url":null,"abstract":"<div><p>Human limb surrogates, of varying biofidelity, are used in the performance assessment of sports personal protective equipment (PPE). Such biofidelic surrogates have incorporated soft tissue simulants (silicones) and synthetic bone (short fibre filled epoxy). Testing surrogates incorporating realistic synthetic bone could help to further our knowledge of fracture trauma mechanics, and applications such as the effectiveness of sports PPE. Limb surrogates with embedded synthetic bone are rarely tested to fracture, mainly due to the effort and cost of replacing them. This paper proposes additive manufacturing of synthetic bones, with appropriate bone like fracture characteristics, potentially making them more accessible and cost effective. A Markforged® X7™ printer was used as it prints a base filament (Onyx™) alongside a continuous strand of reinforcement (e.g., carbon fibre). The properties of specimens from this printer vary with the type, volume fraction and position of reinforcement. Bar specimens (10 × 4 × 120 mm) with varying amounts of carbon fibre reinforcement were printed for three-point bend testing to determine the feasibility of achieving mechanical properties close to compact bone (bending modulus of ∼15 GPa, bending strength of ∼180 MPa). Bending strength for the various bar specimens ranged from 32 to 378 MPa, and modulus values ranged from 1.5 to 25.8 GPa. Based on these results, four 140 mm long oval shaped cylindrical specimens of ø14 and ø16 mm were printed to represent a basic radius bone model. Three-point bend testing of these bone models showed similar bending modulus (3.8 to 5.3 GPa vs. 3.66 to 14.8 GPa) to radius bones reported in the literature, but higher bending strength (147 to 200 MPa vs. 80.31 ± 14.55 MPa).</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"12 ","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43782158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}