Analysis & sensing最新文献

筛选
英文 中文
Cover Feature: Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone-Based Point-of-Care Testing with Enzymatic μPAD (Anal. Sens. 4/2023) 封面特征:高级鲁米诺衍生物的增强化学发光提供基于智能手机的灵敏护理点测试,具有酶促μPAD(Anal.Sens.4/2023)
Analysis & sensing Pub Date : 2023-05-05 DOI: 10.1002/anse.202300028
Simone Rink, Prof. Dr. Axel Duerkop, Prof. Dr. Antje J. Baeumner
{"title":"Cover Feature: Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone-Based Point-of-Care Testing with Enzymatic μPAD (Anal. Sens. 4/2023)","authors":"Simone Rink,&nbsp;Prof. Dr. Axel Duerkop,&nbsp;Prof. Dr. Antje J. Baeumner","doi":"10.1002/anse.202300028","DOIUrl":"https://doi.org/10.1002/anse.202300028","url":null,"abstract":"<p><b>The cover image illustrates</b> the principle of a newly developed chemiluminescence (CL) microfluidic paper-based analytical device (μPAD) that enables highly sensitive detection of any catalytic process in which H<sub>2</sub>O<sub>2</sub> is produced. Through the use of a new, sensitive CL luminophore cell phone camera detection allows quantification on-site with the same sensitivity as afforded through a CCD camera in the lab. One-step reactions to time the catalytic reactions can easily be realized through a moveable barrier if desired. Lactate is detected with μM detection limits and three orders of magnitude dynamic range in sweat, the luminophore reaches a pM detection limit. Cover design by Simone Rink.  More information can be found in the Research Article by Antje Baeumner and co-workers .\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50131612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: A Wearable Biosensor for Sweat Lactate as a Proxy for Sport Performance Monitoring (Anal. Sens. 4/2023) 封面:一种可穿戴的汗液乳酸生物传感器,作为运动表现监测的代理(Anal.Sens.4/2023)
Analysis & sensing Pub Date : 2023-05-05 DOI: 10.1002/anse.202300026
Dr. Xing Xuan, Chen Chen, Dr. Clara Pérez-Ràfols, Dr. Mikael Swarén, Lars Wedholm, Prof. Dr. Maria Cuartero, Prof. Dr. Gaston A. Crespo
{"title":"Front Cover: A Wearable Biosensor for Sweat Lactate as a Proxy for Sport Performance Monitoring (Anal. Sens. 4/2023)","authors":"Dr. Xing Xuan,&nbsp;Chen Chen,&nbsp;Dr. Clara Pérez-Ràfols,&nbsp;Dr. Mikael Swarén,&nbsp;Lars Wedholm,&nbsp;Prof. Dr. Maria Cuartero,&nbsp;Prof. Dr. Gaston A. Crespo","doi":"10.1002/anse.202300026","DOIUrl":"https://doi.org/10.1002/anse.202300026","url":null,"abstract":"<p><b>The front cover represents</b> a wearable biosensor for the digitalization of lactate in sweat during sport activity. The biosensor is integrated into a microfluidic system for continue lactate monitoring, producing reliable real-time profiles. Outcomes: Real-time sweat lactate assessment is a potential proxy of personalized training strategies in cycling. More information can be found in the Research Article by Maria Cuartero, Gaston A. Crespo, and co-workers.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50131609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wearable Biosensor for Sweat Lactate as a Proxy for Sport Performance Monitoring 一种可穿戴的汗液乳酸生物传感器作为运动成绩监测的代理
Analysis & sensing Pub Date : 2023-05-05 DOI: 10.1002/anse.202300027
Dr. Xing Xuan, Chen Chen, Dr. Clara Pérez-Ràfols, Dr. Mikael Swarén, Lars Wedholm, Prof. Dr. Maria Cuartero, Prof. Dr. Gaston A. Crespo
{"title":"A Wearable Biosensor for Sweat Lactate as a Proxy for Sport Performance Monitoring","authors":"Dr. Xing Xuan,&nbsp;Chen Chen,&nbsp;Dr. Clara Pérez-Ràfols,&nbsp;Dr. Mikael Swarén,&nbsp;Lars Wedholm,&nbsp;Prof. Dr. Maria Cuartero,&nbsp;Prof. Dr. Gaston A. Crespo","doi":"10.1002/anse.202300027","DOIUrl":"https://doi.org/10.1002/anse.202300027","url":null,"abstract":"<p>Invited for this month′s cover are the collaborating groups of Prof. Cuartero and Prof. Crespo at KTH and UCAM universities with the participation of Dalarna University. The cover picture shows a wearable biosensor for the digitalization of lactate in sweat during sport activity. The biosensor is integrated into a microfluidic system for continue lactate monitoring, producing reliable real-time profiles. It was found out that real-time sweat lactate assessment is a potential proxy of personalized training strategies in sports such as cycling.“ More information can be found in the Research Article by Maria Cuartero, Gaston A. Crespo, and co-workers.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50131610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Legionella pneumophila in Cooling Tower Water Samples with a DNAzyme/Bead-Based Fluorescence Assay DNAzyme/珠状荧光法检测冷却塔水样中的嗜肺军团菌
Analysis & sensing Pub Date : 2023-04-27 DOI: 10.1002/anse.202300020
Shuwen Qian, Dr. Erin M. McConnell, Meghan Rothenbroker, Jimmy Gu, Simina Alungulesa, Louis Godbout, Prof. Yingfu Li
{"title":"Detecting Legionella pneumophila in Cooling Tower Water Samples with a DNAzyme/Bead-Based Fluorescence Assay","authors":"Shuwen Qian,&nbsp;Dr. Erin M. McConnell,&nbsp;Meghan Rothenbroker,&nbsp;Jimmy Gu,&nbsp;Simina Alungulesa,&nbsp;Louis Godbout,&nbsp;Prof. Yingfu Li","doi":"10.1002/anse.202300020","DOIUrl":"https://doi.org/10.1002/anse.202300020","url":null,"abstract":"<p><i>Legionella pneumophila</i> is the causative agent behind the deadly waterborne disease Legionnaires’, which is commonly transmitted by the spread of contaminated droplets from cooling tower water samples. The lack of effective detection methods presents a challenge for <i>L. pneumophila</i> outbreak control. Previously, an RNA-cleaving DNAzyme called LP1 was reported to specifically target <i>L. pneumophila</i>. In this study, LP1 was immobilized onto agarose beads via streptavidin-biotin interaction to develop a bead-based fluorescence assay for <i>L. pneumophila</i> detection. This bead-based assay demonstrated excellent stability and functionality in various cooling tower water samples. To improve <i>L. pneumophila</i> monitoring in real-world samples, a lysozyme treatment was used to enhance <i>L. pneumophila</i> recognition. The limit of detection of this DNAzyme-based bead assay can reach 10<sup>3</sup> CFUs in cell-spiked cooling tower water samples without cell culturing or signal amplification steps.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109174568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Universal CRISPR/Cas12a-Assisted Methodology Based on Duplex Switch Structure to Detect Multiple Types of Targets 一种基于双开关结构的通用CRISPR/ cas12a辅助方法检测多类型靶标
Analysis & sensing Pub Date : 2023-04-23 DOI: 10.1002/anse.202300018
Yao Xiao, Dr. Huan Li, Dr. Yidan Tang, Prof. Bingling Li
{"title":"A Universal CRISPR/Cas12a-Assisted Methodology Based on Duplex Switch Structure to Detect Multiple Types of Targets","authors":"Yao Xiao,&nbsp;Dr. Huan Li,&nbsp;Dr. Yidan Tang,&nbsp;Prof. Bingling Li","doi":"10.1002/anse.202300018","DOIUrl":"https://doi.org/10.1002/anse.202300018","url":null,"abstract":"<p>Recent years, molecular detection technology has been playing an unprecedentedly important role in disease prevention and public health. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems such as CRISPR/Cas12a and CRISPR/Cas13a, have been increasingly used in the detection of nucleic acid molecules because of its collateral cleavage ability in recent years. Herein, we develop a universal CRISPR/Cas12a-assisted methodology based on a nucleic acid duplex switch structure that can distinguish different categories of targets, such as DNA, RNA and small molecules. It is worth noting that for nucleic acid detection, this method can significantly identify single base substitutions with high specificity, compared with other Cas12a-assisted biosensing systems. The experimental results suggest that this method has great specificity for different targets, promising to be applied to rapid molecular diagnosis.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109173120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity-based Fluorescent Imaging of Alcohol Dehydrogenase Activity in Living Cells 活细胞中乙醇脱氢酶活性的荧光成像研究
Analysis & sensing Pub Date : 2023-04-10 DOI: 10.1002/anse.202300012
Wai Yin Yau, Dr. Samuel Kin-Man Lai, Dr. Pilar Blasco, Prof. Xuechen Li, Prof. Kwan Ming Ng, Dr. Chun Nam Lok, Dr. Ho Yu Au-Yeung
{"title":"Activity-based Fluorescent Imaging of Alcohol Dehydrogenase Activity in Living Cells","authors":"Wai Yin Yau,&nbsp;Dr. Samuel Kin-Man Lai,&nbsp;Dr. Pilar Blasco,&nbsp;Prof. Xuechen Li,&nbsp;Prof. Kwan Ming Ng,&nbsp;Dr. Chun Nam Lok,&nbsp;Dr. Ho Yu Au-Yeung","doi":"10.1002/anse.202300012","DOIUrl":"https://doi.org/10.1002/anse.202300012","url":null,"abstract":"<p>Development of a fluorescent probe for activity-based sensing of activity of alcohol dehydrogenase, a key enzyme in ethanol biooxidation, is reported. A caged coumarin reporter is released upon the selective oxidation by the enzyme with a strong, &gt;60-fold emission enhancement. The probe has a low cytotoxicity and has been applied in visualising alcohol dehydrogenase activity in HepG2, A549 and HEK293T cells, demonstrating its potential as a convenient, easy-to-use bioanalytical tools in unveiling the roles of the enzyme in alcohol metabolism.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109231317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing Success 感知成功
Analysis & sensing Pub Date : 2023-03-03 DOI: 10.1002/anse.202300013
Dr. Jonathan A. Faiz
{"title":"Sensing Success","authors":"Dr. Jonathan A. Faiz","doi":"10.1002/anse.202300013","DOIUrl":"https://doi.org/10.1002/anse.202300013","url":null,"abstract":"<p>Editor in Chief Jonathan Faiz looks back at the developments in <i>Analysis &amp; Sensing</i> in 2022, and introduces our new Commissioning Editors.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50124805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Tunable Colorimetric Carbon Dioxide Sensor Based on Ion-Exchanger- and Chromoionophore-Doped Hydrogel 基于离子交换剂和色离子团掺杂水凝胶的可调谐比色二氧化碳传感器
Analysis & sensing Pub Date : 2023-03-01 DOI: 10.1002/anse.202300002
Yupu Zhang, Dr. Xinfeng Du, Dr. Jingying Zhai, Prof. Xiaojiang Xie
{"title":"A Tunable Colorimetric Carbon Dioxide Sensor Based on Ion-Exchanger- and Chromoionophore-Doped Hydrogel","authors":"Yupu Zhang,&nbsp;Dr. Xinfeng Du,&nbsp;Dr. Jingying Zhai,&nbsp;Prof. Xiaojiang Xie","doi":"10.1002/anse.202300002","DOIUrl":"https://doi.org/10.1002/anse.202300002","url":null,"abstract":"<p>We report here a colorimetric carbon dioxide (CO<sub>2</sub>) optode sensor with a polypropylene microporous membrane on top of a thin layer (30 μm) of polyurethane hydrogel. The diffusion of CO<sub>2</sub> across the polypropylene membrane induced pH changes in the hydrogel containing a lipophilic indicator, a cation exchanger, and a cationic amine. The ratio of the indicator and the cation exchanger was successfully utilized to adjust the sensitivity of the CO<sub>2</sub> response. Increasing the relative amount of the cation exchanger made the sensor much more sensitive to CO<sub>2</sub> in the lower concentration range. Moreover, the carbarmic formation reaction between the primary amine and CO<sub>2</sub> was investigated. The results indicated a very small contribution of carbarmic formation to the overall pH change. With a detection limit of 0.014 % for the CO<sub>2</sub> partial pressure, the sensor was successful applied to monitor CO<sub>2</sub> evolution during yeast catalyzed flour fermentation.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109160273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone-Based Point-of-Care Testing with Enzymatic μPAD 高级鲁米诺衍生物的增强化学发光提供基于智能手机的酶促μPAD护理点测试
Analysis & sensing Pub Date : 2023-02-28 DOI: 10.1002/anse.202200111
Simone Rink, Prof. Dr. Axel Duerkop, Prof. Dr. Antje J. Baeumner
{"title":"Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone-Based Point-of-Care Testing with Enzymatic μPAD","authors":"Simone Rink,&nbsp;Prof. Dr. Axel Duerkop,&nbsp;Prof. Dr. Antje J. Baeumner","doi":"10.1002/anse.202200111","DOIUrl":"https://doi.org/10.1002/anse.202200111","url":null,"abstract":"<p>Chemiluminescence (CL) provides ideal conditions for point-of-care testing (POCT) with wide dynamic ranges, superior sensitivities, and detection simplicity. It has not arrived routinely in the POCT field due to naturally low quantum yields of typical probes and the lack of sensitive low-cost detection devices. Here, we developed a universal microfluidic paper-based analytical device (μPAD) using <span>l</span>-lactate as model analyte. We demonstrate that a smartphone camera can compete with a scientific CCD camera as performance benchmark when using the strong CL emitter, <i>m-</i>carboxy luminol, resulting in extraordinary signal-to-noise ratios of 67. The μPAD provides CV&lt;10 %, stability at room temperature for≥3 months and simple processing. Furthermore, the μPAD enables the detection of picomoles of the luminophore providing additional design flexibility. Thus, this new CL-μPAD is available for translating the many CL standard analytical assays performed in <b>microtiter plates</b>, microarrays or other more complex detection strategies to the POC.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202200111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme-Free Fluorescent Detection of MicroRNA in Clinical Samples by Catalytic Hairpin Assembly Coupled with Magnetic Bead-Confined 3D DNA Walking 催化发夹组装耦合磁珠约束三维DNA行走的临床样品中MicroRNA的无酶荧光检测
Analysis & sensing Pub Date : 2023-02-27 DOI: 10.1002/anse.202300011
Jingyuan Yu, Lijuan Qi, Songchen Zhao, Dr. Xiaojun Zhang, Xudong Shang, Prof. Xintong Hu, Liguo Chen, Duo Wang, Prof. Yanfang Jiang, Prof. Yan Du
{"title":"Enzyme-Free Fluorescent Detection of MicroRNA in Clinical Samples by Catalytic Hairpin Assembly Coupled with Magnetic Bead-Confined 3D DNA Walking","authors":"Jingyuan Yu,&nbsp;Lijuan Qi,&nbsp;Songchen Zhao,&nbsp;Dr. Xiaojun Zhang,&nbsp;Xudong Shang,&nbsp;Prof. Xintong Hu,&nbsp;Liguo Chen,&nbsp;Duo Wang,&nbsp;Prof. Yanfang Jiang,&nbsp;Prof. Yan Du","doi":"10.1002/anse.202300011","DOIUrl":"https://doi.org/10.1002/anse.202300011","url":null,"abstract":"<p>Catalytic hairpin assembly (CHA), as an enzyme-free isotheral nucleic acid amplification method, can easily cooperate with other amplification procedures to improve the sensitivity and accuracy of detection. Herein, we constructed a cascaded CHA sensing platform for breast cancer biomarker detection. Introducing a short double nucleic acid stand avoids the product of CHA1 to directly trigger the CHA2 reaction, which simplifies the design of the CHA hairpins. Compared with the single CHA2 reaction, the cascaded CHA biosensor activated by microRNA-155 holds nearly 10 times the amplification efficiency with detection limit down to 47.4 pM and quantifies the target in the range from 50 pM to 200 nM. Besides, the magnetic bead-confined CHA2 taking 3D DNA walking as the display form contributes to decreasing the environmental interference. As expected, the strategy sensitively distinguishes expression levels of microRNA-155 in different cell lines and cancer patients, which are consistent with the results of traditional qRT-PCR method. More importantly, simply adjusting the microRNA recognition sequence of CHA1 can extend the cascaded CHA platform to a wider detection range. Therefore, the robustness and efficiency of the approach enable the potential applications for detection of microRNA and early clinical disease diagnosis.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109174572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信