{"title":"Partial asymptotic stability of neutral pantograph stochastic differential equations with Markovian switching","authors":"Lassaad Mchiri, T. Caraballo, Mohamed Rhaima","doi":"10.1186/s13662-022-03692-x","DOIUrl":"https://doi.org/10.1186/s13662-022-03692-x","url":null,"abstract":"","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65777571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometric properties of the meromorphic functions class through special functions associated with a linear operator","authors":"F. Ghanim, H. Al‐Janaby, O. Bazighifan","doi":"10.1186/s13662-022-03691-y","DOIUrl":"https://doi.org/10.1186/s13662-022-03691-y","url":null,"abstract":"","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65777549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Lax pair structure for the spin Benjamin–Ono equation","authors":"P. G'erard","doi":"10.1186/s13662-023-03768-2","DOIUrl":"https://doi.org/10.1186/s13662-023-03768-2","url":null,"abstract":"","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48478282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical analysis of fractional-order sequential hybrid system with numerical application","authors":"Aziz Khan, Z. Khan, T. Abdeljawad, H. Khan","doi":"10.1186/s13662-022-03685-w","DOIUrl":"https://doi.org/10.1186/s13662-022-03685-w","url":null,"abstract":"","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48999807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Legendre polynomials based neural networks for the analysis of heat and mass transfer of a non-Newtonian fluid in a porous channel","authors":"N. A. Khan, M. Sulaiman, P. Kumam, F. Alarfaj","doi":"10.1186/s13662-022-03676-x","DOIUrl":"https://doi.org/10.1186/s13662-022-03676-x","url":null,"abstract":"","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65777032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stochastic optimal control with random coefficients and associated stochastic Hamilton–Jacobi–Bellman equations","authors":"Jun Moon","doi":"10.1186/s13662-021-03674-5","DOIUrl":"https://doi.org/10.1186/s13662-021-03674-5","url":null,"abstract":"","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65776934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A noninteger order SEITR dynamical model for TB.","authors":"Jitendra Panchal, Falguni Acharya, Kanan Joshi","doi":"10.1186/s13662-022-03700-0","DOIUrl":"10.1186/s13662-022-03700-0","url":null,"abstract":"<p><p>This research paper designs the noninteger order SEITR dynamical model in the Caputo sense for tuberculosis. The authors of the article have classified the infection compartment into four different compartments such as newly infected unrecognized individuals, diagnosed patients, highly infected patients, and patients with delays in treatment which provide better detail of the TB infection dynamic. We estimate the model parameters using the least square curve fitting and demonstrate that the proposed model provides a good fit to tuberculosis confirmed cases of India from the year 2000 to 2020. Further, we compute the basic reproduction number as <math><msub><mi>ℜ</mi> <mn>0</mn></msub> <mo>≈</mo> <mn>1.73</mn></math> of the model using the next-generation matrix method and the model equilibria. The existence and uniqueness of the approximate solution for the SEITR model is validated using the generalized Adams-Bashforth-Moulton method. The graphical representation of the fractional order model is given to validate the result using the numerical simulation. We conclude that the fractional order model is more realistic than the classical integer order model and provide more detailed information about the real data of the TB disease dynamics.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":"27"},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65777671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fast continuous time approach with time scaling for nonsmooth convex optimization.","authors":"Radu Ioan Boţ, Mikhail A Karapetyants","doi":"10.1186/s13662-022-03744-2","DOIUrl":"https://doi.org/10.1186/s13662-022-03744-2","url":null,"abstract":"<p><p>In a Hilbert setting, we study the convergence properties of the second order in time dynamical system combining viscous and Hessian-driven damping with time scaling in relation to the minimization of a nonsmooth and convex function. The system is formulated in terms of the gradient of the Moreau envelope of the objective function with a time-dependent parameter. We show fast convergence rates for the Moreau envelope, its gradient along the trajectory, and also for the system velocity. From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":"73"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10462356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new mathematical model of multi-faced COVID-19 formulated by fractional derivative chains.","authors":"Ibtisam Aldawish, Rabha W Ibrahim","doi":"10.1186/s13662-022-03677-w","DOIUrl":"10.1186/s13662-022-03677-w","url":null,"abstract":"<p><p>It has been reported that there are seven different types of coronaviruses realized by individuals, containing those responsible for the SARS, MERS, and COVID-19 epidemics. Nowadays, numerous designs of COVID-19 are investigated using different operators of fractional calculus. Most of these mathematical models describe only one type of COVID-19 (infected and asymptomatic). In this study, we aim to present an altered growth of two or more types of COVID-19. Our technique is based on the ABC-fractional derivative operator. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion between infected and asymptomatic people. The consequence is accordingly connected with a macroscopic rule for the individuals. In this analysis, we utilize the concept of a fractional chain. This type of chain is a fractional differential-difference equation combining continuous and discrete variables. The existence of solutions is recognized by formulating a matrix theory. The solution of the approximated system is shown to have a minimax point at the origin.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":"6"},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65777104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pushpendra Kumar, V Govindaraj, Vedat Suat Erturk, Mohamed S Mohamed
{"title":"Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model.","authors":"Pushpendra Kumar, V Govindaraj, Vedat Suat Erturk, Mohamed S Mohamed","doi":"10.1186/s13662-022-03679-8","DOIUrl":"10.1186/s13662-022-03679-8","url":null,"abstract":"<p><p>Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor-corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":"31"},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}