利用分数导数链建立的多面 COVID-19 新数学模型。

IF 2.3 Q1 MATHEMATICS
Ibtisam Aldawish, Rabha W Ibrahim
{"title":"利用分数导数链建立的多面 COVID-19 新数学模型。","authors":"Ibtisam Aldawish, Rabha W Ibrahim","doi":"10.1186/s13662-022-03677-w","DOIUrl":null,"url":null,"abstract":"<p><p>It has been reported that there are seven different types of coronaviruses realized by individuals, containing those responsible for the SARS, MERS, and COVID-19 epidemics. Nowadays, numerous designs of COVID-19 are investigated using different operators of fractional calculus. Most of these mathematical models describe only one type of COVID-19 (infected and asymptomatic). In this study, we aim to present an altered growth of two or more types of COVID-19. Our technique is based on the ABC-fractional derivative operator. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion between infected and asymptomatic people. The consequence is accordingly connected with a macroscopic rule for the individuals. In this analysis, we utilize the concept of a fractional chain. This type of chain is a fractional differential-difference equation combining continuous and discrete variables. The existence of solutions is recognized by formulating a matrix theory. The solution of the approximated system is shown to have a minimax point at the origin.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2022 1","pages":"6"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777456/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new mathematical model of multi-faced COVID-19 formulated by fractional derivative chains.\",\"authors\":\"Ibtisam Aldawish, Rabha W Ibrahim\",\"doi\":\"10.1186/s13662-022-03677-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been reported that there are seven different types of coronaviruses realized by individuals, containing those responsible for the SARS, MERS, and COVID-19 epidemics. Nowadays, numerous designs of COVID-19 are investigated using different operators of fractional calculus. Most of these mathematical models describe only one type of COVID-19 (infected and asymptomatic). In this study, we aim to present an altered growth of two or more types of COVID-19. Our technique is based on the ABC-fractional derivative operator. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion between infected and asymptomatic people. The consequence is accordingly connected with a macroscopic rule for the individuals. In this analysis, we utilize the concept of a fractional chain. This type of chain is a fractional differential-difference equation combining continuous and discrete variables. The existence of solutions is recognized by formulating a matrix theory. The solution of the approximated system is shown to have a minimax point at the origin.</p>\",\"PeriodicalId\":72091,\"journal\":{\"name\":\"Advances in continuous and discrete models\",\"volume\":\"2022 1\",\"pages\":\"6\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in continuous and discrete models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-022-03677-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13662-022-03677-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

据报道,目前有七种不同类型的冠状病毒由个体实现,其中包括导致 SARS、MERS 和 COVID-19 流行的冠状病毒。目前,人们使用不同的分数微积分算子对 COVID-19 的多种设计进行了研究。这些数学模型大多只描述一种 COVID-19(感染和无症状)。在本研究中,我们旨在介绍两种或多种类型 COVID-19 的变化生长情况。我们的技术基于 ABC 分数导数算子。我们研究了一个耦合微分方程系统,其中包含感染者和无症状者之间的扩散动态。其结果相应地与个体的宏观规则相关联。在分析中,我们使用了分数链的概念。这种链是一种结合了连续变量和离散变量的分数微分差分方程。通过矩阵理论,我们认识到了解的存在。近似系统的解表明在原点有一个最小点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new mathematical model of multi-faced COVID-19 formulated by fractional derivative chains.

It has been reported that there are seven different types of coronaviruses realized by individuals, containing those responsible for the SARS, MERS, and COVID-19 epidemics. Nowadays, numerous designs of COVID-19 are investigated using different operators of fractional calculus. Most of these mathematical models describe only one type of COVID-19 (infected and asymptomatic). In this study, we aim to present an altered growth of two or more types of COVID-19. Our technique is based on the ABC-fractional derivative operator. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion between infected and asymptomatic people. The consequence is accordingly connected with a macroscopic rule for the individuals. In this analysis, we utilize the concept of a fractional chain. This type of chain is a fractional differential-difference equation combining continuous and discrete variables. The existence of solutions is recognized by formulating a matrix theory. The solution of the approximated system is shown to have a minimax point at the origin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信